Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Influence of hand grip strength test and short physical performance battery on FRAX in post-menopausal women: a machine learning cross-sectional study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F24%3A10473014" target="_blank" >RIV/00064165:_____/24:10473014 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11110/24:10473014 RIV/00216208:11130/24:10473014

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RaxMuGS0Wn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=RaxMuGS0Wn</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23736/S0022-4707.23.15417-X" target="_blank" >10.23736/S0022-4707.23.15417-X</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Influence of hand grip strength test and short physical performance battery on FRAX in post-menopausal women: a machine learning cross-sectional study

  • Popis výsledku v původním jazyce

    BACKGROUND: Impaired physical performance and muscle strength are recognized risk factors for fragility fractures, frequently associated with osteoporosis and sarcopenia. However, the integration of muscle strength and physical performance in the comprehensive assessment of fracture risk is still debated. Therefore, this cross-sectional study aimed to assess the potential role of hand grip strength (HGS) and short physical performance battery (SPPB) for predicting fragility fractures and their correlation with Fracture Risk Assessment Tool (FRAX) with a machine learning approach. METHODS: In this cross-sectional study, a group of postmenopausal women underwent assessment of their strength, with the outcome measured using the HSG, their physical performance evaluated using the SPPB, and the predictive algorithm for fragility fractures known as FRAX. The statistical analysis included correlation analysis using Pearson&apos;s r and a decision tree model to compare different variables and their relationship with the FRAX Index. This machine learning approach allowed to create a visual decision boundaries plot, providing a dynamic representation of variables interactions in predicting fracture risk. RESULTS: Thirty-four patients (mean age 63.8+-10.7 years) were included. Both HGS and SPPB negatively correlate with FRAX major (r=-0.381, P=0.034; and r=-0.407, P=0.023 respectively), whereas only SPPB significantly correlated with an inverse proportionality to FRAX hip (r=-0.492, P=0.001). According to a machine learning approach, FRAX major &gt;=20 and/or hip &gt;=3 might be reported for an SPPB&lt;6. Concurrently, HGS&lt;17.5 kg correlated with FRAX major &gt;=20 and/or hip &gt;=3. CONCLUSIONS: In light of the major findings, this cross-sectional study using a machine learning model related SPPB and HGS to FRAX. Therefore, a precise assessment including muscle strength and physical performance might be considered in the multidisciplinary assessment of fracture risk in post-menopausal women.

  • Název v anglickém jazyce

    Influence of hand grip strength test and short physical performance battery on FRAX in post-menopausal women: a machine learning cross-sectional study

  • Popis výsledku anglicky

    BACKGROUND: Impaired physical performance and muscle strength are recognized risk factors for fragility fractures, frequently associated with osteoporosis and sarcopenia. However, the integration of muscle strength and physical performance in the comprehensive assessment of fracture risk is still debated. Therefore, this cross-sectional study aimed to assess the potential role of hand grip strength (HGS) and short physical performance battery (SPPB) for predicting fragility fractures and their correlation with Fracture Risk Assessment Tool (FRAX) with a machine learning approach. METHODS: In this cross-sectional study, a group of postmenopausal women underwent assessment of their strength, with the outcome measured using the HSG, their physical performance evaluated using the SPPB, and the predictive algorithm for fragility fractures known as FRAX. The statistical analysis included correlation analysis using Pearson&apos;s r and a decision tree model to compare different variables and their relationship with the FRAX Index. This machine learning approach allowed to create a visual decision boundaries plot, providing a dynamic representation of variables interactions in predicting fracture risk. RESULTS: Thirty-four patients (mean age 63.8+-10.7 years) were included. Both HGS and SPPB negatively correlate with FRAX major (r=-0.381, P=0.034; and r=-0.407, P=0.023 respectively), whereas only SPPB significantly correlated with an inverse proportionality to FRAX hip (r=-0.492, P=0.001). According to a machine learning approach, FRAX major &gt;=20 and/or hip &gt;=3 might be reported for an SPPB&lt;6. Concurrently, HGS&lt;17.5 kg correlated with FRAX major &gt;=20 and/or hip &gt;=3. CONCLUSIONS: In light of the major findings, this cross-sectional study using a machine learning model related SPPB and HGS to FRAX. Therefore, a precise assessment including muscle strength and physical performance might be considered in the multidisciplinary assessment of fracture risk in post-menopausal women.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30306 - Sport and fitness sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Sports Medicine and Physical Fitness

  • ISSN

    0022-4707

  • e-ISSN

    1827-1928

  • Svazek periodika

    64

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    IT - Italská republika

  • Počet stran výsledku

    8

  • Strana od-do

    293-300

  • Kód UT WoS článku

    001146360100001

  • EID výsledku v databázi Scopus

    2-s2.0-85186748108