QRS Complex Detection in Paced and Spontaneous Ultra-High-Frequency ECG
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064173%3A_____%2F21%3AN0000101" target="_blank" >RIV/00064173:_____/21:N0000101 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.23919/CinC53138.2021.9662647" target="_blank" >https://doi.org/10.23919/CinC53138.2021.9662647</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/CinC53138.2021.9662647" target="_blank" >10.23919/CinC53138.2021.9662647</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
QRS Complex Detection in Paced and Spontaneous Ultra-High-Frequency ECG
Popis výsledku v původním jazyce
Background: Analysis of ultra-high-frequency ECG (UHF-ECG, sampled at 5,000 Hz) informs about dyssynchrony of ventricles activation. This information can be evaluated in real-time, allowing optimization of a pacing location during pacemaker implantation. However, the current method for real-time QRS detection in UHF-ECG requires suppressed pacemaker stimuli. Aim: We present a deep learning method for real-time QRS complex detection in UHF-ECG. Method: A 3-second window from V1, V3, and V6 lead of UHF-ECG signal is standardized and processed with the UNet network. The output is an array of QRS probabilities, further transformed into resultant QRS annotation using QRS probability and distance criterion. Results: The model had been trained on 2,250 ECG recordings from the FNUSA-ICRC hospital (Brno, Czechia) and tested on 300 recordings from the FNKV hospital (Prague, Czechia). We received an overall F1 score of 97.11 % on the test set. Conclusion: Presented approach improves UHF-ECG analysis performance and, consequently, could reduce measurement time during implant procedures.
Název v anglickém jazyce
QRS Complex Detection in Paced and Spontaneous Ultra-High-Frequency ECG
Popis výsledku anglicky
Background: Analysis of ultra-high-frequency ECG (UHF-ECG, sampled at 5,000 Hz) informs about dyssynchrony of ventricles activation. This information can be evaluated in real-time, allowing optimization of a pacing location during pacemaker implantation. However, the current method for real-time QRS detection in UHF-ECG requires suppressed pacemaker stimuli. Aim: We present a deep learning method for real-time QRS complex detection in UHF-ECG. Method: A 3-second window from V1, V3, and V6 lead of UHF-ECG signal is standardized and processed with the UNet network. The output is an array of QRS probabilities, further transformed into resultant QRS annotation using QRS probability and distance criterion. Results: The model had been trained on 2,250 ECG recordings from the FNUSA-ICRC hospital (Brno, Czechia) and tested on 300 recordings from the FNKV hospital (Prague, Czechia). We received an overall F1 score of 97.11 % on the test set. Conclusion: Presented approach improves UHF-ECG analysis performance and, consequently, could reduce measurement time during implant procedures.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30201 - Cardiac and Cardiovascular systems
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computing in Cardiology, Vol. 48
ISBN
978-1-66546-721-6
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
IEEE
Místo vydání
New Jersey
Místo konání akce
Brno
Datum konání akce
12. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—