Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F15%3A10337230" target="_blank" >RIV/00064203:_____/15:10337230 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11130/15:10337230
Výsledek na webu
<a href="http://dx.doi.org/10.1038/ng.3431" target="_blank" >http://dx.doi.org/10.1038/ng.3431</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/ng.3431" target="_blank" >10.1038/ng.3431</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis
Popis výsledku v původním jazyce
Heritability analyses of genome-wide association study (GWAS) cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here we analyze the genetic architectures of schizophrenia in 49,806 samples from the PGC and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which >= 71% of 1-Mb genomic regions harbor >= 1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) for several pairs of GERA diseases; genetic correlations were on average 1.3 tunes stronger than the correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multicomponent, multi-trait variance-components analysis that overcomes prior computational barriers that made such analyses intractable at this scale.
Název v anglickém jazyce
Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis
Popis výsledku anglicky
Heritability analyses of genome-wide association study (GWAS) cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here we analyze the genetic architectures of schizophrenia in 49,806 samples from the PGC and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which >= 71% of 1-Mb genomic regions harbor >= 1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) for several pairs of GERA diseases; genetic correlations were on average 1.3 tunes stronger than the correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multicomponent, multi-trait variance-components analysis that overcomes prior computational barriers that made such analyses intractable at this scale.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EB - Genetika a molekulární biologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Genetics
ISSN
1061-4036
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
1385-1392
Kód UT WoS článku
000365813200007
EID výsledku v databázi Scopus
2-s2.0-85000643907