Improving Prediction of Glycaemia Course After Different Meals-New Individualized Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F19%3A10394147" target="_blank" >RIV/00064203:_____/19:10394147 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11130/19:10394147 RIV/68407700:21460/19:00339123 RIV/68407700:21730/19:00339123
Výsledek na webu
<a href="https://doi.org/10.1007/978-981-10-9023-3_137" target="_blank" >https://doi.org/10.1007/978-981-10-9023-3_137</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-9023-3_137" target="_blank" >10.1007/978-981-10-9023-3_137</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving Prediction of Glycaemia Course After Different Meals-New Individualized Approach
Popis výsledku v původním jazyce
Motivation and objectives: Diabetes is one of the biggest medical problems nowadays, having different forms and different mechanism of development but the ultimate result is the same-hyperglycaemia. Hyperglycaemia leads to development of chronic diabetic complications, which are the most frequent cause of worsening patient's life quality and often shortening life expectancy. All diabetes mellitus (DM) type 1 patients and some of DM type 2 patients require full insulin substitution. It is not simple to adjust insulin dose to different meals and different daily activities. To help patients with this challenge we started to develop an application for smart phones having new features in comparison with existing applications. We concentrated on individual response to different types of meals (division based on glycaemic index), to physical activity and individually different basal metabolic rate. Material and methods: So far 24 patients, mostly insulin pump users, were enrolled. Patients used during the study at least 4 weeks RT-CGM and during this period they were asked to document all food and drinks containing carbohydrates by smart phone camera. Patients wrote during this time a detailed logbook as well. The detailed nutritional analysis of patient's food was done as well as evaluation of other condition (level of depression, measurement of basal metabolic rate). Results: The quality of photos was problematic but the biggest problem was to analyze mixed meal from the photography. It was not possible without at least short patient's description. Patient's diet was unhealthy (high fat content etc.) and patients despite remedial nutritional reeducation made mistakes in carbohydrates counting which was reflected in their glycaemia profiles. Conclusion: It seems that using photos with brief notes is an acceptable solution and adding a personalized database of favourite meals with correct nutritional data (which we are developing now) may be very helpful. Then the patient only confirms selected meal and does not need to insert all data again. Based on data from the insulin pump and the glucose sensor and inserted information about the planned meal from the patient, the application can recommend the prandial bolus to be injected before meal.
Název v anglickém jazyce
Improving Prediction of Glycaemia Course After Different Meals-New Individualized Approach
Popis výsledku anglicky
Motivation and objectives: Diabetes is one of the biggest medical problems nowadays, having different forms and different mechanism of development but the ultimate result is the same-hyperglycaemia. Hyperglycaemia leads to development of chronic diabetic complications, which are the most frequent cause of worsening patient's life quality and often shortening life expectancy. All diabetes mellitus (DM) type 1 patients and some of DM type 2 patients require full insulin substitution. It is not simple to adjust insulin dose to different meals and different daily activities. To help patients with this challenge we started to develop an application for smart phones having new features in comparison with existing applications. We concentrated on individual response to different types of meals (division based on glycaemic index), to physical activity and individually different basal metabolic rate. Material and methods: So far 24 patients, mostly insulin pump users, were enrolled. Patients used during the study at least 4 weeks RT-CGM and during this period they were asked to document all food and drinks containing carbohydrates by smart phone camera. Patients wrote during this time a detailed logbook as well. The detailed nutritional analysis of patient's food was done as well as evaluation of other condition (level of depression, measurement of basal metabolic rate). Results: The quality of photos was problematic but the biggest problem was to analyze mixed meal from the photography. It was not possible without at least short patient's description. Patient's diet was unhealthy (high fat content etc.) and patients despite remedial nutritional reeducation made mistakes in carbohydrates counting which was reflected in their glycaemia profiles. Conclusion: It seems that using photos with brief notes is an acceptable solution and adding a personalized database of favourite meals with correct nutritional data (which we are developing now) may be very helpful. Then the patient only confirms selected meal and does not need to insert all data again. Based on data from the insulin pump and the glucose sensor and inserted information about the planned meal from the patient, the application can recommend the prandial bolus to be injected before meal.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30202 - Endocrinology and metabolism (including diabetes, hormones)
Návaznosti výsledku
Projekt
<a href="/cs/project/NV15-25710A" target="_blank" >NV15-25710A: Identifikace individuální dynamiky glykemických exkurzí u pacientů s diabetem pro zlepšení rozhodovacích postupů ovlivňujících dávkování inzulínu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
World Congress on Medical Physics and Biomedical Engineering 2018, Vol 3
ISBN
978-981-10-9022-6
ISSN
1680-0737
e-ISSN
—
Počet stran výsledku
6
Strana od-do
757-762
Název nakladatele
Springer-Verlag
Místo vydání
New York
Místo konání akce
Praha
Datum konání akce
3. 8. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000449744300137