Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine Learning Used to Compare the Diagnostic Accuracy of Risk Factors, Clinical Signs and Biomarkers and to Develop a New Prediction Model for Neonatal Early-onset Sepsis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F22%3A10432242" target="_blank" >RIV/00064203:_____/22:10432242 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11130/22:10432242

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=brLARB9GcX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=brLARB9GcX</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1097/INF.0000000000003344" target="_blank" >10.1097/INF.0000000000003344</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine Learning Used to Compare the Diagnostic Accuracy of Risk Factors, Clinical Signs and Biomarkers and to Develop a New Prediction Model for Neonatal Early-onset Sepsis

  • Popis výsledku v původním jazyce

    BACKGROUND: Current strategies for risk stratification and prediction of neonatal early-onset sepsis (EOS) are inefficient and lack diagnostic performance. The aim of this study was to use machine learning to analyze the diagnostic accuracy of risk factors (RFs), clinical signs and biomarkers and to develop a prediction model for culture-proven EOS. We hypothesized that the contribution to diagnostic accuracy of biomarkers is higher than of RFs or clinical signs. STUDY DESIGN: Secondary analysis of the prospective international multicenter NeoPInS study. Neonates born after completed 34 weeks of gestation with antibiotic therapy due to suspected EOS within the first 72 hours of life participated. Primary outcome was defined as predictive performance for culture-proven EOS with variables known at the start of antibiotic therapy. Machine learning was used in form of a random forest classifier. RESULTS: One thousand six hundred eighty-five neonates treated for suspected infection were analyzed. Biomarkers were superior to clinical signs and RFs for prediction of culture-proven EOS. C-reactive protein and white blood cells were most important for the prediction of the culture result. Our full model achieved an area-under-the-receiver-operating-characteristic-curve of 83.41% (+-8.8%) and an area-under-the-precision-recall-curve of 28.42% (+-11.5%). The predictive performance of the model with RFs alone was comparable with random. CONCLUSIONS: Biomarkers have to be considered in algorithms for the management of neonates suspected of EOS. A 2-step approach with a screening tool for all neonates in combination with our model in the preselected population with an increased risk for EOS may have the potential to reduce the start of unnecessary antibiotics.

  • Název v anglickém jazyce

    Machine Learning Used to Compare the Diagnostic Accuracy of Risk Factors, Clinical Signs and Biomarkers and to Develop a New Prediction Model for Neonatal Early-onset Sepsis

  • Popis výsledku anglicky

    BACKGROUND: Current strategies for risk stratification and prediction of neonatal early-onset sepsis (EOS) are inefficient and lack diagnostic performance. The aim of this study was to use machine learning to analyze the diagnostic accuracy of risk factors (RFs), clinical signs and biomarkers and to develop a prediction model for culture-proven EOS. We hypothesized that the contribution to diagnostic accuracy of biomarkers is higher than of RFs or clinical signs. STUDY DESIGN: Secondary analysis of the prospective international multicenter NeoPInS study. Neonates born after completed 34 weeks of gestation with antibiotic therapy due to suspected EOS within the first 72 hours of life participated. Primary outcome was defined as predictive performance for culture-proven EOS with variables known at the start of antibiotic therapy. Machine learning was used in form of a random forest classifier. RESULTS: One thousand six hundred eighty-five neonates treated for suspected infection were analyzed. Biomarkers were superior to clinical signs and RFs for prediction of culture-proven EOS. C-reactive protein and white blood cells were most important for the prediction of the culture result. Our full model achieved an area-under-the-receiver-operating-characteristic-curve of 83.41% (+-8.8%) and an area-under-the-precision-recall-curve of 28.42% (+-11.5%). The predictive performance of the model with RFs alone was comparable with random. CONCLUSIONS: Biomarkers have to be considered in algorithms for the management of neonates suspected of EOS. A 2-step approach with a screening tool for all neonates in combination with our model in the preselected population with an increased risk for EOS may have the potential to reduce the start of unnecessary antibiotics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30214 - Obstetrics and gynaecology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Pediatric Infectious Disease Journal

  • ISSN

    0891-3668

  • e-ISSN

    1532-0987

  • Svazek periodika

    41

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    7

  • Strana od-do

    248-254

  • Kód UT WoS článku

    000753592000025

  • EID výsledku v databázi Scopus

    2-s2.0-85122307962