Can Machine Learning Models Predict Asparaginase-associated Pancreatitis in Childhood Acute Lymphoblastic Leukemia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F22%3A10433552" target="_blank" >RIV/00064203:_____/22:10433552 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11130/22:10433552
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nH4EJkIZwu" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nH4EJkIZwu</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1097/MPH.0000000000002292" target="_blank" >10.1097/MPH.0000000000002292</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Can Machine Learning Models Predict Asparaginase-associated Pancreatitis in Childhood Acute Lymphoblastic Leukemia
Popis výsledku v původním jazyce
Asparaginase-associated pancreatitis (AAP) frequently affects children treated for acute lymphoblastic leukemia (ALL) causing severe acute and persisting complications. Known risk factors such as asparaginase dosing, older age and single nucleotide polymorphisms (SNPs) have insufficient odds ratios to allow personalized asparaginase therapy. In this study, we explored machine learning strategies for prediction of individual AAP risk. We integrated information on age, sex, and SNPs based on Illumina Omni2.5exome-8 arrays of patients with childhood ALL (N=1564, 244 with AAP aged 1.0 to 17.9 y) from 10 international ALL consortia into machine learning models including regression, random forest, AdaBoost and artificial neural networks. A model with only age and sex had area under the receiver operating characteristic curve (ROC-AUC) of 0.62. Inclusion of 6 pancreatitis candidate gene SNPs or 4 validated pancreatitis SNPs boosted ROC-AUC somewhat (0.67) while 30 SNPs, identified through our AAP genome-wide association study cohort, boosted performance (0.80). Most predictive features included rs10273639 (PRSS1-PRSS2), rs10436957 (CTRC), rs13228878 (PRSS1/PRSS2), rs1505495 (GALNTL6), rs4655107 (EPHB2) and age (1 to 7 y). Second AAP following asparaginase re-exposure was predicted with ROC-AUC: 0.65. The machine learning models assist individual-level risk assessment of AAP for future prevention trials, and may legitimize asparaginase re-exposure when AAP risk is predicted to be low.
Název v anglickém jazyce
Can Machine Learning Models Predict Asparaginase-associated Pancreatitis in Childhood Acute Lymphoblastic Leukemia
Popis výsledku anglicky
Asparaginase-associated pancreatitis (AAP) frequently affects children treated for acute lymphoblastic leukemia (ALL) causing severe acute and persisting complications. Known risk factors such as asparaginase dosing, older age and single nucleotide polymorphisms (SNPs) have insufficient odds ratios to allow personalized asparaginase therapy. In this study, we explored machine learning strategies for prediction of individual AAP risk. We integrated information on age, sex, and SNPs based on Illumina Omni2.5exome-8 arrays of patients with childhood ALL (N=1564, 244 with AAP aged 1.0 to 17.9 y) from 10 international ALL consortia into machine learning models including regression, random forest, AdaBoost and artificial neural networks. A model with only age and sex had area under the receiver operating characteristic curve (ROC-AUC) of 0.62. Inclusion of 6 pancreatitis candidate gene SNPs or 4 validated pancreatitis SNPs boosted ROC-AUC somewhat (0.67) while 30 SNPs, identified through our AAP genome-wide association study cohort, boosted performance (0.80). Most predictive features included rs10273639 (PRSS1-PRSS2), rs10436957 (CTRC), rs13228878 (PRSS1/PRSS2), rs1505495 (GALNTL6), rs4655107 (EPHB2) and age (1 to 7 y). Second AAP following asparaginase re-exposure was predicted with ROC-AUC: 0.65. The machine learning models assist individual-level risk assessment of AAP for future prevention trials, and may legitimize asparaginase re-exposure when AAP risk is predicted to be low.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30205 - Hematology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Pediatric Hematology/Oncology
ISSN
1077-4114
e-ISSN
1536-3678
Svazek periodika
44
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
"E628"-"E636"
Kód UT WoS článku
000772033500014
EID výsledku v databázi Scopus
2-s2.0-85117820186