Prediction of Shunt Responsiveness in Suspected Patients With Normal Pressure Hydrocephalus Using the Lumbar Infusion Test: A Machine Learning Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F22%3A10437662" target="_blank" >RIV/00064203:_____/22:10437662 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61383082:_____/22:00001182 RIV/00216208:11110/22:10437662 RIV/00216208:11130/22:10437662 RIV/68407700:21230/22:00357668 a 2 dalších
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Qh2frywRqh" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Qh2frywRqh</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1227/NEU.0000000000001838" target="_blank" >10.1227/NEU.0000000000001838</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of Shunt Responsiveness in Suspected Patients With Normal Pressure Hydrocephalus Using the Lumbar Infusion Test: A Machine Learning Approach
Popis výsledku v původním jazyce
BACKGROUND: Machine learning (ML) approaches can significantly improve the classical Rout-based evaluation of the lumbar infusion test (LIT) and the clinical management of the normal pressure hydrocephalus. OBJECTIVE: To develop a ML model that accurately identifies patients as candidates for permanent cerebral spinal fluid shunt implantation using only intracranial pressure and electrocardiogram signals recorded throughout LIT. METHODS: This was a single-center cohort study of prospectively collected data of 96 patients who underwent LIT and 5-day external lumbar cerebral spinal fluid drainage (external lumbar drainage) as a reference diagnostic method. A set of selected 48 intracranial pressure/electrocardiogram complex signal waveform features describing nonlinear behavior, wavelet transform spectral signatures, or recurrent map patterns were calculated for each patient. After applying a leave-one-out cross-validation training-testing split of the data set, we trained and evaluated the performance of various state-of-the-art ML algorithms. RESULTS: The highest performing ML algorithm was the eXtreme Gradient Boosting. This model showed a good calibration and discrimination on the testing data, with an area under the receiver operating characteristic curve of 0.891 (accuracy: 82.3%, sensitivity: 86.1%, and specificity: 73.9%) obtained for 8 selected features. Our ML model clearly outperforms the classical Rout-based manual classification commonly used in clinical practice with an accuracy of 62.5%. CONCLUSION: This study successfully used the ML approach to predict the outcome of a 5-day external lumbar drainage and hence which patients are likely to benefit from permanent shunt implantation. Our automated ML model thus enhances the diagnostic utility of LIT in management.
Název v anglickém jazyce
Prediction of Shunt Responsiveness in Suspected Patients With Normal Pressure Hydrocephalus Using the Lumbar Infusion Test: A Machine Learning Approach
Popis výsledku anglicky
BACKGROUND: Machine learning (ML) approaches can significantly improve the classical Rout-based evaluation of the lumbar infusion test (LIT) and the clinical management of the normal pressure hydrocephalus. OBJECTIVE: To develop a ML model that accurately identifies patients as candidates for permanent cerebral spinal fluid shunt implantation using only intracranial pressure and electrocardiogram signals recorded throughout LIT. METHODS: This was a single-center cohort study of prospectively collected data of 96 patients who underwent LIT and 5-day external lumbar cerebral spinal fluid drainage (external lumbar drainage) as a reference diagnostic method. A set of selected 48 intracranial pressure/electrocardiogram complex signal waveform features describing nonlinear behavior, wavelet transform spectral signatures, or recurrent map patterns were calculated for each patient. After applying a leave-one-out cross-validation training-testing split of the data set, we trained and evaluated the performance of various state-of-the-art ML algorithms. RESULTS: The highest performing ML algorithm was the eXtreme Gradient Boosting. This model showed a good calibration and discrimination on the testing data, with an area under the receiver operating characteristic curve of 0.891 (accuracy: 82.3%, sensitivity: 86.1%, and specificity: 73.9%) obtained for 8 selected features. Our ML model clearly outperforms the classical Rout-based manual classification commonly used in clinical practice with an accuracy of 62.5%. CONCLUSION: This study successfully used the ML approach to predict the outcome of a 5-day external lumbar drainage and hence which patients are likely to benefit from permanent shunt implantation. Our automated ML model thus enhances the diagnostic utility of LIT in management.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neurosurgery
ISSN
0148-396X
e-ISSN
1524-4040
Svazek periodika
90
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
407-418
Kód UT WoS článku
000883606600023
EID výsledku v databázi Scopus
2-s2.0-85126830558