A study on 3D classical versus GAN-based augmentation for MRI brain image to predict the diagnosis of dementia with Lewy bodies and Alzheimer's disease in a European multi-center study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F22%3A10445370" target="_blank" >RIV/00064203:_____/22:10445370 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11130/22:10445370
Výsledek na webu
<a href="https://doi.org/10.1117/12.2611339" target="_blank" >https://doi.org/10.1117/12.2611339</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2611339" target="_blank" >10.1117/12.2611339</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A study on 3D classical versus GAN-based augmentation for MRI brain image to predict the diagnosis of dementia with Lewy bodies and Alzheimer's disease in a European multi-center study
Popis výsledku v původním jazyce
Every year around 10 million people are diagnosed with dementia worldwide. Higher life expectancy and population growth could inflate this number even further in the near future. Alzheimer's disease (AD) is one of the primary and most frequently diagnosed dementia disease in elderly subjects. On the other hand, dementia with Lewy Bodies (DLB) is the third most common cause of dementia. A timely and accurate diagnosis of dementia is critical for patients' management and treatment. However, its diagnostic is often challenging due to overlapping symptoms between the different forms of thee disease. Deep learning (DL) combined with magnetic resonance imaging (MRI) has shown potential improving the diagnostic accuracy of several neurodegenerative diseases. In spite of it, DL methods heavily rely on the availability of annotated data. Classic augmentation techniques such as translation are commonly used to increase data availability. In addition, synthetic samples obtained through generative adversarial networks (GAN) are becoming an alternative to classic augmentation. Such techniques are well-known and explored for 2D images, but little is known about their effects in a 3D setting. In this work, we explore the effects of 3D classic augmentation and 3D GAN-based augmentation to classify between AD, DLB and control subjects.
Název v anglickém jazyce
A study on 3D classical versus GAN-based augmentation for MRI brain image to predict the diagnosis of dementia with Lewy bodies and Alzheimer's disease in a European multi-center study
Popis výsledku anglicky
Every year around 10 million people are diagnosed with dementia worldwide. Higher life expectancy and population growth could inflate this number even further in the near future. Alzheimer's disease (AD) is one of the primary and most frequently diagnosed dementia disease in elderly subjects. On the other hand, dementia with Lewy Bodies (DLB) is the third most common cause of dementia. A timely and accurate diagnosis of dementia is critical for patients' management and treatment. However, its diagnostic is often challenging due to overlapping symptoms between the different forms of thee disease. Deep learning (DL) combined with magnetic resonance imaging (MRI) has shown potential improving the diagnostic accuracy of several neurodegenerative diseases. In spite of it, DL methods heavily rely on the availability of annotated data. Classic augmentation techniques such as translation are commonly used to increase data availability. In addition, synthetic samples obtained through generative adversarial networks (GAN) are becoming an alternative to classic augmentation. Such techniques are well-known and explored for 2D images, but little is known about their effects in a 3D setting. In this work, we explore the effects of 3D classic augmentation and 3D GAN-based augmentation to classify between AD, DLB and control subjects.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Progress in Biomedical Optics and Imaging - Proceedings of SPIE
ISBN
978-1-5106-4941-5
ISSN
1605-7422
e-ISSN
2410-9045
Počet stran výsledku
10
Strana od-do
—
Název nakladatele
SPIE
Místo vydání
Bellingham
Místo konání akce
San Diego
Datum konání akce
21. 3. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000838048600084