Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A study on 3D classical versus GAN-based augmentation for MRI brain image to predict the diagnosis of dementia with Lewy bodies and Alzheimer's disease in a European multi-center study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F22%3A10445370" target="_blank" >RIV/00064203:_____/22:10445370 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11130/22:10445370

  • Výsledek na webu

    <a href="https://doi.org/10.1117/12.2611339" target="_blank" >https://doi.org/10.1117/12.2611339</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2611339" target="_blank" >10.1117/12.2611339</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A study on 3D classical versus GAN-based augmentation for MRI brain image to predict the diagnosis of dementia with Lewy bodies and Alzheimer's disease in a European multi-center study

  • Popis výsledku v původním jazyce

    Every year around 10 million people are diagnosed with dementia worldwide. Higher life expectancy and population growth could inflate this number even further in the near future. Alzheimer&apos;s disease (AD) is one of the primary and most frequently diagnosed dementia disease in elderly subjects. On the other hand, dementia with Lewy Bodies (DLB) is the third most common cause of dementia. A timely and accurate diagnosis of dementia is critical for patients&apos; management and treatment. However, its diagnostic is often challenging due to overlapping symptoms between the different forms of thee disease. Deep learning (DL) combined with magnetic resonance imaging (MRI) has shown potential improving the diagnostic accuracy of several neurodegenerative diseases. In spite of it, DL methods heavily rely on the availability of annotated data. Classic augmentation techniques such as translation are commonly used to increase data availability. In addition, synthetic samples obtained through generative adversarial networks (GAN) are becoming an alternative to classic augmentation. Such techniques are well-known and explored for 2D images, but little is known about their effects in a 3D setting. In this work, we explore the effects of 3D classic augmentation and 3D GAN-based augmentation to classify between AD, DLB and control subjects.

  • Název v anglickém jazyce

    A study on 3D classical versus GAN-based augmentation for MRI brain image to predict the diagnosis of dementia with Lewy bodies and Alzheimer's disease in a European multi-center study

  • Popis výsledku anglicky

    Every year around 10 million people are diagnosed with dementia worldwide. Higher life expectancy and population growth could inflate this number even further in the near future. Alzheimer&apos;s disease (AD) is one of the primary and most frequently diagnosed dementia disease in elderly subjects. On the other hand, dementia with Lewy Bodies (DLB) is the third most common cause of dementia. A timely and accurate diagnosis of dementia is critical for patients&apos; management and treatment. However, its diagnostic is often challenging due to overlapping symptoms between the different forms of thee disease. Deep learning (DL) combined with magnetic resonance imaging (MRI) has shown potential improving the diagnostic accuracy of several neurodegenerative diseases. In spite of it, DL methods heavily rely on the availability of annotated data. Classic augmentation techniques such as translation are commonly used to increase data availability. In addition, synthetic samples obtained through generative adversarial networks (GAN) are becoming an alternative to classic augmentation. Such techniques are well-known and explored for 2D images, but little is known about their effects in a 3D setting. In this work, we explore the effects of 3D classic augmentation and 3D GAN-based augmentation to classify between AD, DLB and control subjects.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Progress in Biomedical Optics and Imaging - Proceedings of SPIE

  • ISBN

    978-1-5106-4941-5

  • ISSN

    1605-7422

  • e-ISSN

    2410-9045

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    SPIE

  • Místo vydání

    Bellingham

  • Místo konání akce

    San Diego

  • Datum konání akce

    21. 3. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000838048600084