Leveraging Deep Learning Decision-Support System in Specialized Oncology Center: A Multi-Reader Retrospective Study on Detection of Pulmonary Lesions in Chest X-ray Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F23%3A10458480" target="_blank" >RIV/00064203:_____/23:10458480 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10458480 RIV/00209805:_____/23:00079208
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DEq.3Pva3h" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DEq.3Pva3h</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/diagnostics13061043" target="_blank" >10.3390/diagnostics13061043</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Leveraging Deep Learning Decision-Support System in Specialized Oncology Center: A Multi-Reader Retrospective Study on Detection of Pulmonary Lesions in Chest X-ray Images
Popis výsledku v původním jazyce
Chest X-ray (CXR) is considered to be the most widely used modality for detecting and monitoring various thoracic findings, including lung carcinoma and other pulmonary lesions. However, X-ray imaging shows particular limitations when detecting primary and secondary tumors and is prone to reading errors due to limited resolution and disagreement between radiologists. To address these issues, we developed a deep-learning-based automatic detection algorithm (DLAD) to automatically detect and localize suspicious lesions on CXRs. Five radiologists were invited to retrospectively evaluate 300 CXR images from a specialized oncology center, and the performance of individual radiologists was subsequently compared with that of DLAD. The proposed DLAD achieved significantly higher sensitivity (0.910 (0.854-0.966)) than that of all assessed radiologists (RAD 10.290 (0.201-0.379), p < 0.001, RAD 20.450 (0.352-0.548), p < 0.001, RAD 30.670 (0.578-0.762), p < 0.001, RAD 40.810 (0.733-0.887), p = 0.025, RAD 50.700 (0.610-0.790), p < 0.001). The DLAD specificity (0.775 (0.717-0.833)) was significantly lower than for all assessed radiologists (RAD 11.000 (0.984-1.000), p < 0.001, RAD 20.970 (0.946-1.000), p < 0.001, RAD 30.980 (0.961-1.000), p < 0.001, RAD 40.975 (0.953-0.997), p < 0.001, RAD 50.995 (0.985-1.000), p < 0.001). The study results demonstrate that the proposed DLAD could be utilized as a decision-support system to reduce radiologists' false negative rate.
Název v anglickém jazyce
Leveraging Deep Learning Decision-Support System in Specialized Oncology Center: A Multi-Reader Retrospective Study on Detection of Pulmonary Lesions in Chest X-ray Images
Popis výsledku anglicky
Chest X-ray (CXR) is considered to be the most widely used modality for detecting and monitoring various thoracic findings, including lung carcinoma and other pulmonary lesions. However, X-ray imaging shows particular limitations when detecting primary and secondary tumors and is prone to reading errors due to limited resolution and disagreement between radiologists. To address these issues, we developed a deep-learning-based automatic detection algorithm (DLAD) to automatically detect and localize suspicious lesions on CXRs. Five radiologists were invited to retrospectively evaluate 300 CXR images from a specialized oncology center, and the performance of individual radiologists was subsequently compared with that of DLAD. The proposed DLAD achieved significantly higher sensitivity (0.910 (0.854-0.966)) than that of all assessed radiologists (RAD 10.290 (0.201-0.379), p < 0.001, RAD 20.450 (0.352-0.548), p < 0.001, RAD 30.670 (0.578-0.762), p < 0.001, RAD 40.810 (0.733-0.887), p = 0.025, RAD 50.700 (0.610-0.790), p < 0.001). The DLAD specificity (0.775 (0.717-0.833)) was significantly lower than for all assessed radiologists (RAD 11.000 (0.984-1.000), p < 0.001, RAD 20.970 (0.946-1.000), p < 0.001, RAD 30.980 (0.961-1.000), p < 0.001, RAD 40.975 (0.953-0.997), p < 0.001, RAD 50.995 (0.985-1.000), p < 0.001). The study results demonstrate that the proposed DLAD could be utilized as a decision-support system to reduce radiologists' false negative rate.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30204 - Oncology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Diagnostics
ISSN
2075-4418
e-ISSN
2075-4418
Svazek periodika
13
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
1043
Kód UT WoS článku
000955949800001
EID výsledku v databázi Scopus
2-s2.0-85152356552