Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Biological object recognition in mu-radiography images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064211%3A_____%2F15%3A%230000457" target="_blank" >RIV/00064211:_____/15:#0000457 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60076658:12310/15:43889008 RIV/00216208:11110/15:10296034

  • Výsledek na webu

    <a href="http://iopscience.iop.org/1748-0221/10/03/C03023" target="_blank" >http://iopscience.iop.org/1748-0221/10/03/C03023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1748-0221/10/03/C03023" target="_blank" >10.1088/1748-0221/10/03/C03023</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Biological object recognition in mu-radiography images

  • Popis výsledku v původním jazyce

    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae = 0 : 99, average recall for detection of dead pupae = 0 : 83), than for the flat panel (average recall for detection of alive pupae = 0 : 99, average recall for detection of dead pupae = 0 : 77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.

  • Název v anglickém jazyce

    Biological object recognition in mu-radiography images

  • Popis výsledku anglicky

    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae = 0 : 99, average recall for detection of dead pupae = 0 : 83), than for the flat panel (average recall for detection of alive pupae = 0 : 99, average recall for detection of dead pupae = 0 : 77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BO - Biofyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF INSTRUMENTATION

  • ISSN

    1748-0221

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    03

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000357944500023

  • EID výsledku v databázi Scopus