FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F15%3A00063745" target="_blank" >RIV/00159816:_____/15:00063745 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1371/journal.pcbi.1004556" target="_blank" >http://dx.doi.org/10.1371/journal.pcbi.1004556</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pcbi.1004556" target="_blank" >10.1371/journal.pcbi.1004556</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants
Popis výsledku v původním jazyce
There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy-and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalog
Název v anglickém jazyce
FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants
Popis výsledku anglicky
There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy-and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalog
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CE - Biochemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.100%2F02%2F0123" target="_blank" >ED1.100/02/0123: Fakultní nemocnice u sv. Anny v Brně - Mezinárodní centrum klinického výzkumu (FNUSA - ICRC)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS Computational Biology
ISSN
1553-7358
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
—
Kód UT WoS článku
000365801600026
EID výsledku v databázi Scopus
—