Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

PHOSPHO1 is a skeletal regulator of insulin resistance and obesity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F20%3A00073483" target="_blank" >RIV/00159816:_____/20:00073483 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://bmcbiol.biomedcentral.com/track/pdf/10.1186/s12915-020-00880-7.pdf" target="_blank" >https://bmcbiol.biomedcentral.com/track/pdf/10.1186/s12915-020-00880-7.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s12915-020-00880-7" target="_blank" >10.1186/s12915-020-00880-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    PHOSPHO1 is a skeletal regulator of insulin resistance and obesity

  • Popis výsledku v původním jazyce

    BackgroundThe classical functions of the skeleton encompass locomotion, protection and mineral homeostasis. However, cell-specific gene deletions in the mouse and human genetic studies have identified the skeleton as a key endocrine regulator of metabolism. The bone-specific phosphatase, Phosphatase, Orphan 1 (PHOSPHO1), which is indispensable for bone mineralisation, has been recently implicated in the regulation of energy metabolism in humans, but its role in systemic metabolism remains unclear. Here, we probe the mechanism underlying metabolic regulation by analysing Phospho1 mutant mice.ResultsPhospho1(-/-) mice exhibited improved basal glucose homeostasis and resisted high-fat-diet-induced weight gain and diabetes. The metabolic protection in Phospho1(-/-) mice was manifested in the absence of altered levels of osteocalcin. Osteoblasts isolated from Phospho1(-/-) mice were enriched for genes associated with energy metabolism and diabetes; Phospho1 both directly and indirectly interacted with genes associated with glucose transport and insulin receptor signalling. Canonical thermogenesis via brown adipose tissue did not underlie the metabolic protection observed in adult Phospho1(-/-) mice. However, the decreased serum choline levels in Phospho1(-/-) mice were normalised by feeding a 2% choline rich diet resulting in a normalisation in insulin sensitivity and fat mass.ConclusionWe show that mice lacking the bone mineralisation enzyme PHOSPHO1 exhibit improved basal glucose homeostasis and resist high-fat-diet-induced weight gain and diabetes. This study identifies PHOSPHO1 as a potential bone-derived therapeutic target for the treatment of obesity and diabetes.

  • Název v anglickém jazyce

    PHOSPHO1 is a skeletal regulator of insulin resistance and obesity

  • Popis výsledku anglicky

    BackgroundThe classical functions of the skeleton encompass locomotion, protection and mineral homeostasis. However, cell-specific gene deletions in the mouse and human genetic studies have identified the skeleton as a key endocrine regulator of metabolism. The bone-specific phosphatase, Phosphatase, Orphan 1 (PHOSPHO1), which is indispensable for bone mineralisation, has been recently implicated in the regulation of energy metabolism in humans, but its role in systemic metabolism remains unclear. Here, we probe the mechanism underlying metabolic regulation by analysing Phospho1 mutant mice.ResultsPhospho1(-/-) mice exhibited improved basal glucose homeostasis and resisted high-fat-diet-induced weight gain and diabetes. The metabolic protection in Phospho1(-/-) mice was manifested in the absence of altered levels of osteocalcin. Osteoblasts isolated from Phospho1(-/-) mice were enriched for genes associated with energy metabolism and diabetes; Phospho1 both directly and indirectly interacted with genes associated with glucose transport and insulin receptor signalling. Canonical thermogenesis via brown adipose tissue did not underlie the metabolic protection observed in adult Phospho1(-/-) mice. However, the decreased serum choline levels in Phospho1(-/-) mice were normalised by feeding a 2% choline rich diet resulting in a normalisation in insulin sensitivity and fat mass.ConclusionWe show that mice lacking the bone mineralisation enzyme PHOSPHO1 exhibit improved basal glucose homeostasis and resist high-fat-diet-induced weight gain and diabetes. This study identifies PHOSPHO1 as a potential bone-derived therapeutic target for the treatment of obesity and diabetes.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    BMC BIOLOGY

  • ISSN

    1741-7007

  • e-ISSN

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    20

  • Strana od-do

  • Kód UT WoS článku

    000586502000001

  • EID výsledku v databázi Scopus