Splitting of antiferromagnetic resonance modes in the quasi-two-dimensional collinear antiferromagnet Cu(en)(H2O)2 SO4
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F20%3A00080533" target="_blank" >RIV/00159816:_____/20:00080533 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/pdf/1907.11140" target="_blank" >https://arxiv.org/pdf/1907.11140</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.101.014414" target="_blank" >10.1103/PhysRevB.101.014414</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Splitting of antiferromagnetic resonance modes in the quasi-two-dimensional collinear antiferromagnet Cu(en)(H2O)2 SO4
Popis výsledku v původním jazyce
A low-temperature magnetic resonance study of the quasi-two-dimensional antiferromagnet Cu(en)(H2O)(2)SO4 (en = C2H8N2) was performed down to 0.45 K. This compound orders antiferromagnetically at 0.9 K. The analysis of the resonance data within the hydrodynamic approach allowed us to identify anisotropy axes and to estimate the anisotropy parameters for the antiferromagnetic phase. Dipolar spin-spin coupling turns out to be the main contribution to the anisotropy of the antiferromagnetic phase. The splitting of the resonance modes and its nonmonotonous dependence on the applied frequency were observed below 0.6 K in all three field orientations. Several models are discussed to explain the origin of the nontrivial splitting, and the existence of inequivalent magnetic subsystems in Cu(en)(H2O)(2)SO4 is chosen as the most probable source.
Název v anglickém jazyce
Splitting of antiferromagnetic resonance modes in the quasi-two-dimensional collinear antiferromagnet Cu(en)(H2O)2 SO4
Popis výsledku anglicky
A low-temperature magnetic resonance study of the quasi-two-dimensional antiferromagnet Cu(en)(H2O)(2)SO4 (en = C2H8N2) was performed down to 0.45 K. This compound orders antiferromagnetically at 0.9 K. The analysis of the resonance data within the hydrodynamic approach allowed us to identify anisotropy axes and to estimate the anisotropy parameters for the antiferromagnetic phase. Dipolar spin-spin coupling turns out to be the main contribution to the anisotropy of the antiferromagnetic phase. The splitting of the resonance modes and its nonmonotonous dependence on the applied frequency were observed below 0.6 K in all three field orientations. Several models are discussed to explain the origin of the nontrivial splitting, and the existence of inequivalent magnetic subsystems in Cu(en)(H2O)(2)SO4 is chosen as the most probable source.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1605" target="_blank" >LQ1605: Translační medicína</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW B
ISSN
2469-9950
e-ISSN
2469-9969
Svazek periodika
101
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000506581200004
EID výsledku v databázi Scopus
—