3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F21%3A00075039" target="_blank" >RIV/00159816:_____/21:00075039 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14110/21:00122520
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202102661" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202102661</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adma.202102661" target="_blank" >10.1002/adma.202102661</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion
Popis výsledku v původním jazyce
Engineering hierarchical vasculatures is critical for creating implantable functional thick tissues. Current approaches focus on fabricating mesoscale vessels for implantation or hierarchical microvascular in vitro models, but a combined approach is yet to be achieved to create engineered tissue flaps. Here, millimetric vessel-like scaffolds and 3D bioprinted vascularized tissues interconnect, creating fully engineered hierarchical vascular constructs for implantation. Endothelial and support cells spontaneously form microvascular networks in bioprinted tissues using a human collagen bioink. Sacrificial molds are used to create polymeric vessel-like scaffolds and endothelial cells seeded in their lumen form native-like endothelia. Assembling endothelialized scaffolds within vascularizing hydrogels incites the bioprinted vasculature and endothelium to cooperatively create vessels, enabling tissue perfusion through the scaffold lumen. Using a cuffing microsurgery approach, the engineered tissue is directly anastomosed with a rat femoral artery, promoting a rich host vasculature within the implanted tissue. After two weeks in vivo, contrast microcomputer tomography imaging and lectin perfusion of explanted engineered tissues verify the host ingrowth vasculature's functionality. Furthermore, the hierarchical vessel network (VesselNet) supports in vitro functionality of cardiomyocytes. Finally, the proposed approach is expanded to mimic complex structures with native-like millimetric vessels. This work presents a novel strategy aiming to create fully-engineered patient-specific thick tissue flaps.
Název v anglickém jazyce
3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion
Popis výsledku anglicky
Engineering hierarchical vasculatures is critical for creating implantable functional thick tissues. Current approaches focus on fabricating mesoscale vessels for implantation or hierarchical microvascular in vitro models, but a combined approach is yet to be achieved to create engineered tissue flaps. Here, millimetric vessel-like scaffolds and 3D bioprinted vascularized tissues interconnect, creating fully engineered hierarchical vascular constructs for implantation. Endothelial and support cells spontaneously form microvascular networks in bioprinted tissues using a human collagen bioink. Sacrificial molds are used to create polymeric vessel-like scaffolds and endothelial cells seeded in their lumen form native-like endothelia. Assembling endothelialized scaffolds within vascularizing hydrogels incites the bioprinted vasculature and endothelium to cooperatively create vessels, enabling tissue perfusion through the scaffold lumen. Using a cuffing microsurgery approach, the engineered tissue is directly anastomosed with a rat femoral artery, promoting a rich host vasculature within the implanted tissue. After two weeks in vivo, contrast microcomputer tomography imaging and lectin perfusion of explanted engineered tissues verify the host ingrowth vasculature's functionality. Furthermore, the hierarchical vessel network (VesselNet) supports in vitro functionality of cardiomyocytes. Finally, the proposed approach is expanded to mimic complex structures with native-like millimetric vessels. This work presents a novel strategy aiming to create fully-engineered patient-specific thick tissue flaps.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-05510S" target="_blank" >GA18-05510S: Modelování tkáně plic pomocí 3D tisku lidských progenitorových buněk</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCED MATERIALS
ISSN
0935-9648
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
42
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
000696041200001
EID výsledku v databázi Scopus
—