Cognitive Phenotypes of Older Adults with Subjective Cognitive Decline and Amnestic Mild Cognitive Impairment: The Czech Brain Aging Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F21%3A00075108" target="_blank" >RIV/00159816:_____/21:00075108 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00064203:_____/21:10417021 RIV/00216208:11130/21:10417021
Výsledek na webu
<a href="https://www.cambridge.org/core/journals/journal-of-the-international-neuropsychological-society/article/abs/cognitive-phenotypes-of-older-adults-with-subjective-cognitive-decline-and-amnestic-mild-cognitive-impairment-the-czech-brain-aging-study/571FB84DB508924372319E38F333E697" target="_blank" >https://www.cambridge.org/core/journals/journal-of-the-international-neuropsychological-society/article/abs/cognitive-phenotypes-of-older-adults-with-subjective-cognitive-decline-and-amnestic-mild-cognitive-impairment-the-czech-brain-aging-study/571FB84DB508924372319E38F333E697</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1355617720001046" target="_blank" >10.1017/S1355617720001046</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cognitive Phenotypes of Older Adults with Subjective Cognitive Decline and Amnestic Mild Cognitive Impairment: The Czech Brain Aging Study
Popis výsledku v původním jazyce
Objective: To compare cognitive phenotypes of participants with subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI), estimate progression to MCI/dementia by phenotype and assess classification error with machine learning. Method: Dataset consisted of 163 participants with SCD and 282 participants with aMCI from the Czech Brain Aging Study. Cognitive assessment included the Uniform Data Set battery and additional tests to ascertain executive function, language, immediate and delayed memory, visuospatial skills, and processing speed. Latent profile analyses were used to develop cognitive profiles, and Cox proportional hazards models were used to estimate risk of progression. Random forest machine learning algorithms reported cognitive phenotype classification error. Results: Latent profile analysis identified three phenotypes for SCD, with one phenotype performing worse across all domains but not progressing more quickly to MCI/dementia after controlling for age, sex, and education. Three aMCI phenotypes were characterized by mild deficits, memory and language impairment (dysnomic aMCI), and severe multi-domain aMCI (i.e., deficits across all domains). A dose-response relationship between baseline level of impairment and subsequent risk of progression to dementia was evident for aMCI profiles after controlling for age, sex, and education. Machine learning more easily classified participants with aMCI in comparison to SCD (8% vs. 21% misclassified). Conclusions: Cognitive performance follows distinct patterns, especially within aMCI. The patterns map onto risk of progression to dementia.
Název v anglickém jazyce
Cognitive Phenotypes of Older Adults with Subjective Cognitive Decline and Amnestic Mild Cognitive Impairment: The Czech Brain Aging Study
Popis výsledku anglicky
Objective: To compare cognitive phenotypes of participants with subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI), estimate progression to MCI/dementia by phenotype and assess classification error with machine learning. Method: Dataset consisted of 163 participants with SCD and 282 participants with aMCI from the Czech Brain Aging Study. Cognitive assessment included the Uniform Data Set battery and additional tests to ascertain executive function, language, immediate and delayed memory, visuospatial skills, and processing speed. Latent profile analyses were used to develop cognitive profiles, and Cox proportional hazards models were used to estimate risk of progression. Random forest machine learning algorithms reported cognitive phenotype classification error. Results: Latent profile analysis identified three phenotypes for SCD, with one phenotype performing worse across all domains but not progressing more quickly to MCI/dementia after controlling for age, sex, and education. Three aMCI phenotypes were characterized by mild deficits, memory and language impairment (dysnomic aMCI), and severe multi-domain aMCI (i.e., deficits across all domains). A dose-response relationship between baseline level of impairment and subsequent risk of progression to dementia was evident for aMCI profiles after controlling for age, sex, and education. Machine learning more easily classified participants with aMCI in comparison to SCD (8% vs. 21% misclassified). Conclusions: Cognitive performance follows distinct patterns, especially within aMCI. The patterns map onto risk of progression to dementia.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30210 - Clinical neurology
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000868" target="_blank" >EF16_019/0000868: Molekulární, buněčný a klinický přístup ke zdravému stárnutí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF THE INTERNATIONAL NEUROPSYCHOLOGICAL SOCIETY
ISSN
1355-6177
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
329-342
Kód UT WoS článku
000636754200003
EID výsledku v databázi Scopus
—