Deep Learning Analysis of Polish Electronic Health Records for Diagnosis Prediction in Patients with Cardiovascular Diseases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F22%3A00077664" target="_blank" >RIV/00159816:_____/22:00077664 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/22:00125875
Výsledek na webu
<a href="https://www.mdpi.com/2075-4426/12/6/869" target="_blank" >https://www.mdpi.com/2075-4426/12/6/869</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/jpm12060869" target="_blank" >10.3390/jpm12060869</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning Analysis of Polish Electronic Health Records for Diagnosis Prediction in Patients with Cardiovascular Diseases
Popis výsledku v původním jazyce
Electronic health records naturally contain most of the medical information in the form of doctor's notes as unstructured or semi-structured texts. Current deep learning text analysis approaches allow researchers to reveal the inner semantics of text information and even identify hidden consequences that can offer extra decision support to doctors. In the presented article, we offer a new automated analysis of Polish summary texts of patient hospitalizations. The presented models were found to be able to predict the final diagnosis with almost 70% accuracy based just on the patient's medical history (only 132 words on average), with possible accuracy increases when adding further sentences from hospitalization results; even one sentence was found to improve the results by 4%, and the best accuracy of 78% was achieved with five extra sentences. In addition to detailed descriptions of the data and methodology, we present an evaluation of the analysis using more than 50,000 Polish cardiology patient texts and dive into a detailed error analysis of the approach. The results indicate that the deep analysis of just the medical history summary can suggest the direction of diagnosis with a high probability that can be further increased just by supplementing the records with further examination results.
Název v anglickém jazyce
Deep Learning Analysis of Polish Electronic Health Records for Diagnosis Prediction in Patients with Cardiovascular Diseases
Popis výsledku anglicky
Electronic health records naturally contain most of the medical information in the form of doctor's notes as unstructured or semi-structured texts. Current deep learning text analysis approaches allow researchers to reveal the inner semantics of text information and even identify hidden consequences that can offer extra decision support to doctors. In the presented article, we offer a new automated analysis of Polish summary texts of patient hospitalizations. The presented models were found to be able to predict the final diagnosis with almost 70% accuracy based just on the patient's medical history (only 132 words on average), with possible accuracy increases when adding further sentences from hospitalization results; even one sentence was found to improve the results by 4%, and the best accuracy of 78% was achieved with five extra sentences. In addition to detailed descriptions of the data and methodology, we present an evaluation of the analysis using more than 50,000 Polish cardiology patient texts and dive into a detailed error analysis of the approach. The results indicate that the deep analysis of just the medical history summary can suggest the direction of diagnosis with a high probability that can be further increased just by supplementing the records with further examination results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30300 - Health sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF PERSONALIZED MEDICINE
ISSN
2075-4426
e-ISSN
2075-4426
Svazek periodika
12
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
nestrankovano
Kód UT WoS článku
000818311800001
EID výsledku v databázi Scopus
—