Artificial Intelligence in Cardiology-A Narrative Review of Current Status
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F22%3A00077713" target="_blank" >RIV/00159816:_____/22:00077713 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2077-0383/11/13/3910" target="_blank" >https://www.mdpi.com/2077-0383/11/13/3910</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/jcm11133910" target="_blank" >10.3390/jcm11133910</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial Intelligence in Cardiology-A Narrative Review of Current Status
Popis výsledku v původním jazyce
Artificial intelligence (AI) is an integral part of clinical decision support systems (CDSS), offering methods to approximate human reasoning and computationally infer decisions. Such methods are generally based on medical knowledge, either directly encoded with rules or automatically extracted from medical data using machine learning (ML). ML techniques, such as Artificial Neural Networks (ANNs) and support vector machines (SVMs), are based on mathematical models with parameters that can be optimally tuned using appropriate algorithms. The ever-increasing computational capacity of today's computer systems enables more complex ML systems with millions of parameters, bringing AI closer to human intelligence. With this objective, the term deep learning (DL) has been introduced to characterize ML based on deep ANN (DNN) architectures with multiple layers of artificial neurons. Despite all of these promises, the impact of AI in current clinical practice is still limited. However, this could change shortly, as the significantly increased papers in AI, machine learning and deep learning in cardiology show. We highlight the significant achievements of recent years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will take a central stage in the field.
Název v anglickém jazyce
Artificial Intelligence in Cardiology-A Narrative Review of Current Status
Popis výsledku anglicky
Artificial intelligence (AI) is an integral part of clinical decision support systems (CDSS), offering methods to approximate human reasoning and computationally infer decisions. Such methods are generally based on medical knowledge, either directly encoded with rules or automatically extracted from medical data using machine learning (ML). ML techniques, such as Artificial Neural Networks (ANNs) and support vector machines (SVMs), are based on mathematical models with parameters that can be optimally tuned using appropriate algorithms. The ever-increasing computational capacity of today's computer systems enables more complex ML systems with millions of parameters, bringing AI closer to human intelligence. With this objective, the term deep learning (DL) has been introduced to characterize ML based on deep ANN (DNN) architectures with multiple layers of artificial neurons. Despite all of these promises, the impact of AI in current clinical practice is still limited. However, this could change shortly, as the significantly increased papers in AI, machine learning and deep learning in cardiology show. We highlight the significant achievements of recent years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will take a central stage in the field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30218 - General and internal medicine
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF CLINICAL MEDICINE
ISSN
2077-0383
e-ISSN
2077-0383
Svazek periodika
11
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
nestrankovano
Kód UT WoS článku
000825734400001
EID výsledku v databázi Scopus
—