Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Artificial Intelligence in Cardiology-A Narrative Review of Current Status

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F22%3A00077713" target="_blank" >RIV/00159816:_____/22:00077713 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2077-0383/11/13/3910" target="_blank" >https://www.mdpi.com/2077-0383/11/13/3910</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/jcm11133910" target="_blank" >10.3390/jcm11133910</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Artificial Intelligence in Cardiology-A Narrative Review of Current Status

  • Popis výsledku v původním jazyce

    Artificial intelligence (AI) is an integral part of clinical decision support systems (CDSS), offering methods to approximate human reasoning and computationally infer decisions. Such methods are generally based on medical knowledge, either directly encoded with rules or automatically extracted from medical data using machine learning (ML). ML techniques, such as Artificial Neural Networks (ANNs) and support vector machines (SVMs), are based on mathematical models with parameters that can be optimally tuned using appropriate algorithms. The ever-increasing computational capacity of today&apos;s computer systems enables more complex ML systems with millions of parameters, bringing AI closer to human intelligence. With this objective, the term deep learning (DL) has been introduced to characterize ML based on deep ANN (DNN) architectures with multiple layers of artificial neurons. Despite all of these promises, the impact of AI in current clinical practice is still limited. However, this could change shortly, as the significantly increased papers in AI, machine learning and deep learning in cardiology show. We highlight the significant achievements of recent years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will take a central stage in the field.

  • Název v anglickém jazyce

    Artificial Intelligence in Cardiology-A Narrative Review of Current Status

  • Popis výsledku anglicky

    Artificial intelligence (AI) is an integral part of clinical decision support systems (CDSS), offering methods to approximate human reasoning and computationally infer decisions. Such methods are generally based on medical knowledge, either directly encoded with rules or automatically extracted from medical data using machine learning (ML). ML techniques, such as Artificial Neural Networks (ANNs) and support vector machines (SVMs), are based on mathematical models with parameters that can be optimally tuned using appropriate algorithms. The ever-increasing computational capacity of today&apos;s computer systems enables more complex ML systems with millions of parameters, bringing AI closer to human intelligence. With this objective, the term deep learning (DL) has been introduced to characterize ML based on deep ANN (DNN) architectures with multiple layers of artificial neurons. Despite all of these promises, the impact of AI in current clinical practice is still limited. However, this could change shortly, as the significantly increased papers in AI, machine learning and deep learning in cardiology show. We highlight the significant achievements of recent years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will take a central stage in the field.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30218 - General and internal medicine

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF CLINICAL MEDICINE

  • ISSN

    2077-0383

  • e-ISSN

    2077-0383

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    13

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    14

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000825734400001

  • EID výsledku v databázi Scopus