In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F23%3A00079599" target="_blank" >RIV/00159816:_____/23:00079599 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/23:00131491
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0734975023000782?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0734975023000782?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.biotechadv.2023.108171" target="_blank" >10.1016/j.biotechadv.2023.108171</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning
Popis výsledku v původním jazyce
Nowadays, the vastly increasing demand for novel biotechnological products is supported by the continuous development of biocatalytic applications that provide sustainable green alternatives to chemical processes. The success of a biocatalytic application is critically dependent on how quickly we can identify and characterize enzyme variants fitting the conditions of industrial processes. While miniaturization and parallelization have dramatically increased the throughput of next-generation sequencing systems, the subsequent characterization of the obtained candidates is still a limiting process in identifying the desired biocatalysts. Only a few commercial microfluidic systems for enzyme analysis are currently available, and the transformation of numerous published prototypes into commercial platforms is still to be streamlined. This review presents the state-of-the-art, recent trends, and perspectives in applying microfluidic tools in the functional and structural analysis of biocatalysts. We discuss the advantages and disadvantages of available technologies, their reproducibility and robustness, and readiness for routine laboratory use. We also highlight the unexplored potential of microfluidics to leverage the power of machine learning for biocatalyst development.
Název v anglickém jazyce
In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning
Popis výsledku anglicky
Nowadays, the vastly increasing demand for novel biotechnological products is supported by the continuous development of biocatalytic applications that provide sustainable green alternatives to chemical processes. The success of a biocatalytic application is critically dependent on how quickly we can identify and characterize enzyme variants fitting the conditions of industrial processes. While miniaturization and parallelization have dramatically increased the throughput of next-generation sequencing systems, the subsequent characterization of the obtained candidates is still a limiting process in identifying the desired biocatalysts. Only a few commercial microfluidic systems for enzyme analysis are currently available, and the transformation of numerous published prototypes into commercial platforms is still to be streamlined. This review presents the state-of-the-art, recent trends, and perspectives in applying microfluidic tools in the functional and structural analysis of biocatalysts. We discuss the advantages and disadvantages of available technologies, their reproducibility and robustness, and readiness for routine laboratory use. We also highlight the unexplored potential of microfluidics to leverage the power of machine learning for biocatalyst development.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20801 - Environmental biotechnology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biotechnology Advances
ISSN
0734-9750
e-ISSN
1873-1899
Svazek periodika
66
Číslo periodika v rámci svazku
SEP 2023
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
001009341400001
EID výsledku v databázi Scopus
—