Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automated sleep classification with chronic neural implants in freely behaving canines

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F23%3A00079689" target="_blank" >RIV/00159816:_____/23:00079689 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21460/23:00367688 RIV/68407700:21730/23:00367688 RIV/00216305:26220/23:PU148846

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1741-2552/aced21" target="_blank" >https://iopscience.iop.org/article/10.1088/1741-2552/aced21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1741-2552/aced21" target="_blank" >10.1088/1741-2552/aced21</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automated sleep classification with chronic neural implants in freely behaving canines

  • Popis výsledku v původním jazyce

    Objective. Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function. Approach. Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines. Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 &amp; PLUSMN; 0.055 and a Cohen&apos;s Kappa score of 0.786 &amp; PLUSMN; 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 &amp; PLUSMN; 2.34 cycles per day vs. 22.39 &amp; PLUSMN; 3.88 cycles per night; p &lt; 0.001), shorter NREM cycle durations (13.83 &amp; PLUSMN; 8.50 min per day vs. 15.09 &amp; PLUSMN; 8.55 min per night; p &lt; 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 &amp; PLUSMN; 0.09, REM 0.12 &amp; PLUSMN; 0.09 per day vs. NREM 0.80 &amp; PLUSMN; 0.08, REM 0.20 &amp; PLUSMN; 0.08 per night; p &lt; 0.001). Significance. These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.

  • Název v anglickém jazyce

    Automated sleep classification with chronic neural implants in freely behaving canines

  • Popis výsledku anglicky

    Objective. Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function. Approach. Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines. Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 &amp; PLUSMN; 0.055 and a Cohen&apos;s Kappa score of 0.786 &amp; PLUSMN; 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 &amp; PLUSMN; 2.34 cycles per day vs. 22.39 &amp; PLUSMN; 3.88 cycles per night; p &lt; 0.001), shorter NREM cycle durations (13.83 &amp; PLUSMN; 8.50 min per day vs. 15.09 &amp; PLUSMN; 8.55 min per night; p &lt; 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 &amp; PLUSMN; 0.09, REM 0.12 &amp; PLUSMN; 0.09 per day vs. NREM 0.80 &amp; PLUSMN; 0.08, REM 0.20 &amp; PLUSMN; 0.08 per night; p &lt; 0.001). Significance. These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Neural Engineering

  • ISSN

    1741-2560

  • e-ISSN

    1741-2552

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    046025

  • Kód UT WoS článku

    001045228900001

  • EID výsledku v databázi Scopus