Deciphering Enzyme Mechanisms with Engineered Ancestors and Substrate Analogues
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F23%3A00079702" target="_blank" >RIV/00159816:_____/23:00079702 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/23:00132027
Výsledek na webu
<a href="https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202300745" target="_blank" >https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202300745</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cctc.202300745" target="_blank" >10.1002/cctc.202300745</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deciphering Enzyme Mechanisms with Engineered Ancestors and Substrate Analogues
Popis výsledku v původním jazyce
Environmentally friendly industrial and biotech processes greatly benefit from enzyme-based technologies. Their use is often possible only when the enzyme-catalytic mechanism is thoroughly known. Thus, atomic-level knowledge of a Michaelis enzyme-substrate complex, revealing molecular details of substrate recognition and catalytic chemistry, is crucial for understanding and then rationally extending or improving enzyme-catalyzed reactions. However, many known enzymes sample huge protein conformational space, often preventing complete structural characterization by X-ray crystallography. Moreover, using a cognate substrate is problematic since its conversion into a reaction product in the presence of the enzyme will prevent the capture of the enzyme-substrate conformation in an activated state. Here, we outlined how to deal with such obstacles, focusing on the recent discovery of a Renilla-type bioluminescence reaction mechanism facilitated by a combination of engineered ancestral enzyme and the availability of a non-oxidizable luciferin analogue. The automated ancestral sequence reconstructions using FireProtASR provided a thermostable enzyme suited for structural studies, and a stable luciferin analogue azacoelenterazine provided a structurally cognate chemical incapable of catalyzed oxidation. We suggest that an analogous strategy can be applied to various enzymes with unknown catalytic mechanisms and poor crystallizability. Many known enzymes sample huge protein conformational space, hampering structural characterization by X-ray crystallography, and preventing thus the understanding of their catalytic mechanisms. In this review, we outline that the combination of reconstructed ancestral enzymes with unconvertible substrate analogues is becoming a powerful strategy to decipher the challenging mechanisms of enzyme catalysis.image
Název v anglickém jazyce
Deciphering Enzyme Mechanisms with Engineered Ancestors and Substrate Analogues
Popis výsledku anglicky
Environmentally friendly industrial and biotech processes greatly benefit from enzyme-based technologies. Their use is often possible only when the enzyme-catalytic mechanism is thoroughly known. Thus, atomic-level knowledge of a Michaelis enzyme-substrate complex, revealing molecular details of substrate recognition and catalytic chemistry, is crucial for understanding and then rationally extending or improving enzyme-catalyzed reactions. However, many known enzymes sample huge protein conformational space, often preventing complete structural characterization by X-ray crystallography. Moreover, using a cognate substrate is problematic since its conversion into a reaction product in the presence of the enzyme will prevent the capture of the enzyme-substrate conformation in an activated state. Here, we outlined how to deal with such obstacles, focusing on the recent discovery of a Renilla-type bioluminescence reaction mechanism facilitated by a combination of engineered ancestral enzyme and the availability of a non-oxidizable luciferin analogue. The automated ancestral sequence reconstructions using FireProtASR provided a thermostable enzyme suited for structural studies, and a stable luciferin analogue azacoelenterazine provided a structurally cognate chemical incapable of catalyzed oxidation. We suggest that an analogous strategy can be applied to various enzymes with unknown catalytic mechanisms and poor crystallizability. Many known enzymes sample huge protein conformational space, hampering structural characterization by X-ray crystallography, and preventing thus the understanding of their catalytic mechanisms. In this review, we outline that the combination of reconstructed ancestral enzymes with unconvertible substrate analogues is becoming a powerful strategy to decipher the challenging mechanisms of enzyme catalysis.image
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ChemCatChem
ISSN
1867-3880
e-ISSN
1867-3899
Svazek periodika
15
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
001060401600001
EID výsledku v databázi Scopus
—