Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deciphering Enzyme Mechanisms with Engineered Ancestors and Substrate Analogues

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F23%3A00079702" target="_blank" >RIV/00159816:_____/23:00079702 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/23:00132027

  • Výsledek na webu

    <a href="https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202300745" target="_blank" >https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202300745</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/cctc.202300745" target="_blank" >10.1002/cctc.202300745</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deciphering Enzyme Mechanisms with Engineered Ancestors and Substrate Analogues

  • Popis výsledku v původním jazyce

    Environmentally friendly industrial and biotech processes greatly benefit from enzyme-based technologies. Their use is often possible only when the enzyme-catalytic mechanism is thoroughly known. Thus, atomic-level knowledge of a Michaelis enzyme-substrate complex, revealing molecular details of substrate recognition and catalytic chemistry, is crucial for understanding and then rationally extending or improving enzyme-catalyzed reactions. However, many known enzymes sample huge protein conformational space, often preventing complete structural characterization by X-ray crystallography. Moreover, using a cognate substrate is problematic since its conversion into a reaction product in the presence of the enzyme will prevent the capture of the enzyme-substrate conformation in an activated state. Here, we outlined how to deal with such obstacles, focusing on the recent discovery of a Renilla-type bioluminescence reaction mechanism facilitated by a combination of engineered ancestral enzyme and the availability of a non-oxidizable luciferin analogue. The automated ancestral sequence reconstructions using FireProtASR provided a thermostable enzyme suited for structural studies, and a stable luciferin analogue azacoelenterazine provided a structurally cognate chemical incapable of catalyzed oxidation. We suggest that an analogous strategy can be applied to various enzymes with unknown catalytic mechanisms and poor crystallizability. Many known enzymes sample huge protein conformational space, hampering structural characterization by X-ray crystallography, and preventing thus the understanding of their catalytic mechanisms. In this review, we outline that the combination of reconstructed ancestral enzymes with unconvertible substrate analogues is becoming a powerful strategy to decipher the challenging mechanisms of enzyme catalysis.image

  • Název v anglickém jazyce

    Deciphering Enzyme Mechanisms with Engineered Ancestors and Substrate Analogues

  • Popis výsledku anglicky

    Environmentally friendly industrial and biotech processes greatly benefit from enzyme-based technologies. Their use is often possible only when the enzyme-catalytic mechanism is thoroughly known. Thus, atomic-level knowledge of a Michaelis enzyme-substrate complex, revealing molecular details of substrate recognition and catalytic chemistry, is crucial for understanding and then rationally extending or improving enzyme-catalyzed reactions. However, many known enzymes sample huge protein conformational space, often preventing complete structural characterization by X-ray crystallography. Moreover, using a cognate substrate is problematic since its conversion into a reaction product in the presence of the enzyme will prevent the capture of the enzyme-substrate conformation in an activated state. Here, we outlined how to deal with such obstacles, focusing on the recent discovery of a Renilla-type bioluminescence reaction mechanism facilitated by a combination of engineered ancestral enzyme and the availability of a non-oxidizable luciferin analogue. The automated ancestral sequence reconstructions using FireProtASR provided a thermostable enzyme suited for structural studies, and a stable luciferin analogue azacoelenterazine provided a structurally cognate chemical incapable of catalyzed oxidation. We suggest that an analogous strategy can be applied to various enzymes with unknown catalytic mechanisms and poor crystallizability. Many known enzymes sample huge protein conformational space, hampering structural characterization by X-ray crystallography, and preventing thus the understanding of their catalytic mechanisms. In this review, we outline that the combination of reconstructed ancestral enzymes with unconvertible substrate analogues is becoming a powerful strategy to decipher the challenging mechanisms of enzyme catalysis.image

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ChemCatChem

  • ISSN

    1867-3880

  • e-ISSN

    1867-3899

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    001060401600001

  • EID výsledku v databázi Scopus