Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

New Models for Prediction of Postoperative Pulmonary Complications in Lung Resection Candidates

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F24%3A00080366" target="_blank" >RIV/00159816:_____/24:00080366 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14110/24:00137805 RIV/65269705:_____/24:00080366

  • Výsledek na webu

    <a href="https://openres.ersjournals.com/content/early/2024/04/19/23120541.00978-2023" target="_blank" >https://openres.ersjournals.com/content/early/2024/04/19/23120541.00978-2023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1183/23120541.00978-2023" target="_blank" >10.1183/23120541.00978-2023</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    New Models for Prediction of Postoperative Pulmonary Complications in Lung Resection Candidates

  • Popis výsledku v původním jazyce

    Introduction In recent years, ventilatory efficiency (minute ventilation (V&apos;E)/carbon dioxide production (V&apos;CO2) slope) and partial pressure of end-tidal carbon dioxide (PETCO2) have emerged as independent predictors of postoperative pulmonary complications (PPC). Single parameters may give only partial information regarding periprocedural hazards. Accordingly, our aim was to create prediction models with improved ability to stratify PPC risk in patients scheduled for elective lung resection surgery. Methods This post hoc analysis was comprised of consecutive lung resection candidates from two prior prospective trials. All individuals completed pulmonary function tests and cardiopulmonary exercise testing (CPET). Logistic regression analyses were used for identification of risk factors for PPC that were entered into the final risk prediction models. Two risk models were developed; the first used rest PETCO2 (for patients with no available CPET data), the second used V&apos;E/ V&apos;CO2 slope (for patients with available CPET data). Receiver operating characteristic analysis with the De-Long test and area under the curve (AUC) were used for comparison of models. Results The dataset from 423 patients was randomly split into the derivation (n=310) and validation (n=113) cohorts. Two final models were developed, both including sex, thoracotomy, &quot;atypical&quot; resection and forced expiratory volume in 1 s/forced vital capacity ratio as risk factors. In addition, the first model also included rest PETCO2, while the second model used V&apos;E/V&apos;CO2 slope from CPET. AUCs of risk scores were 0.795 (95% CI: 0.739-0.851) and 0.793 (95% CI: 0.737-0.849); both p&lt;0.001. No differences in AUCs were found between the derivation and validation cohorts. Conclusions We created two multicomponental models for PPC risk prediction, both having excellent predictive properties. (C) The authors 2024.

  • Název v anglickém jazyce

    New Models for Prediction of Postoperative Pulmonary Complications in Lung Resection Candidates

  • Popis výsledku anglicky

    Introduction In recent years, ventilatory efficiency (minute ventilation (V&apos;E)/carbon dioxide production (V&apos;CO2) slope) and partial pressure of end-tidal carbon dioxide (PETCO2) have emerged as independent predictors of postoperative pulmonary complications (PPC). Single parameters may give only partial information regarding periprocedural hazards. Accordingly, our aim was to create prediction models with improved ability to stratify PPC risk in patients scheduled for elective lung resection surgery. Methods This post hoc analysis was comprised of consecutive lung resection candidates from two prior prospective trials. All individuals completed pulmonary function tests and cardiopulmonary exercise testing (CPET). Logistic regression analyses were used for identification of risk factors for PPC that were entered into the final risk prediction models. Two risk models were developed; the first used rest PETCO2 (for patients with no available CPET data), the second used V&apos;E/ V&apos;CO2 slope (for patients with available CPET data). Receiver operating characteristic analysis with the De-Long test and area under the curve (AUC) were used for comparison of models. Results The dataset from 423 patients was randomly split into the derivation (n=310) and validation (n=113) cohorts. Two final models were developed, both including sex, thoracotomy, &quot;atypical&quot; resection and forced expiratory volume in 1 s/forced vital capacity ratio as risk factors. In addition, the first model also included rest PETCO2, while the second model used V&apos;E/V&apos;CO2 slope from CPET. AUCs of risk scores were 0.795 (95% CI: 0.739-0.851) and 0.793 (95% CI: 0.737-0.849); both p&lt;0.001. No differences in AUCs were found between the derivation and validation cohorts. Conclusions We created two multicomponental models for PPC risk prediction, both having excellent predictive properties. (C) The authors 2024.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30203 - Respiratory systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/NU21-06-00086" target="_blank" >NU21-06-00086: Trénink dechových svalů jako způsob pre-habilitace před plicním resekčním zákrokem</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ERJ Open Research

  • ISSN

    2312-0541

  • e-ISSN

    2312-0541

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    00978-2023

  • Kód UT WoS článku

    001340127300002

  • EID výsledku v databázi Scopus

    2-s2.0-85205262631