New Models for Prediction of Postoperative Pulmonary Complications in Lung Resection Candidates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F24%3A00080366" target="_blank" >RIV/00159816:_____/24:00080366 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14110/24:00137805 RIV/65269705:_____/24:00080366
Výsledek na webu
<a href="https://openres.ersjournals.com/content/early/2024/04/19/23120541.00978-2023" target="_blank" >https://openres.ersjournals.com/content/early/2024/04/19/23120541.00978-2023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1183/23120541.00978-2023" target="_blank" >10.1183/23120541.00978-2023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New Models for Prediction of Postoperative Pulmonary Complications in Lung Resection Candidates
Popis výsledku v původním jazyce
Introduction In recent years, ventilatory efficiency (minute ventilation (V'E)/carbon dioxide production (V'CO2) slope) and partial pressure of end-tidal carbon dioxide (PETCO2) have emerged as independent predictors of postoperative pulmonary complications (PPC). Single parameters may give only partial information regarding periprocedural hazards. Accordingly, our aim was to create prediction models with improved ability to stratify PPC risk in patients scheduled for elective lung resection surgery. Methods This post hoc analysis was comprised of consecutive lung resection candidates from two prior prospective trials. All individuals completed pulmonary function tests and cardiopulmonary exercise testing (CPET). Logistic regression analyses were used for identification of risk factors for PPC that were entered into the final risk prediction models. Two risk models were developed; the first used rest PETCO2 (for patients with no available CPET data), the second used V'E/ V'CO2 slope (for patients with available CPET data). Receiver operating characteristic analysis with the De-Long test and area under the curve (AUC) were used for comparison of models. Results The dataset from 423 patients was randomly split into the derivation (n=310) and validation (n=113) cohorts. Two final models were developed, both including sex, thoracotomy, "atypical" resection and forced expiratory volume in 1 s/forced vital capacity ratio as risk factors. In addition, the first model also included rest PETCO2, while the second model used V'E/V'CO2 slope from CPET. AUCs of risk scores were 0.795 (95% CI: 0.739-0.851) and 0.793 (95% CI: 0.737-0.849); both p<0.001. No differences in AUCs were found between the derivation and validation cohorts. Conclusions We created two multicomponental models for PPC risk prediction, both having excellent predictive properties. (C) The authors 2024.
Název v anglickém jazyce
New Models for Prediction of Postoperative Pulmonary Complications in Lung Resection Candidates
Popis výsledku anglicky
Introduction In recent years, ventilatory efficiency (minute ventilation (V'E)/carbon dioxide production (V'CO2) slope) and partial pressure of end-tidal carbon dioxide (PETCO2) have emerged as independent predictors of postoperative pulmonary complications (PPC). Single parameters may give only partial information regarding periprocedural hazards. Accordingly, our aim was to create prediction models with improved ability to stratify PPC risk in patients scheduled for elective lung resection surgery. Methods This post hoc analysis was comprised of consecutive lung resection candidates from two prior prospective trials. All individuals completed pulmonary function tests and cardiopulmonary exercise testing (CPET). Logistic regression analyses were used for identification of risk factors for PPC that were entered into the final risk prediction models. Two risk models were developed; the first used rest PETCO2 (for patients with no available CPET data), the second used V'E/ V'CO2 slope (for patients with available CPET data). Receiver operating characteristic analysis with the De-Long test and area under the curve (AUC) were used for comparison of models. Results The dataset from 423 patients was randomly split into the derivation (n=310) and validation (n=113) cohorts. Two final models were developed, both including sex, thoracotomy, "atypical" resection and forced expiratory volume in 1 s/forced vital capacity ratio as risk factors. In addition, the first model also included rest PETCO2, while the second model used V'E/V'CO2 slope from CPET. AUCs of risk scores were 0.795 (95% CI: 0.739-0.851) and 0.793 (95% CI: 0.737-0.849); both p<0.001. No differences in AUCs were found between the derivation and validation cohorts. Conclusions We created two multicomponental models for PPC risk prediction, both having excellent predictive properties. (C) The authors 2024.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30203 - Respiratory systems
Návaznosti výsledku
Projekt
<a href="/cs/project/NU21-06-00086" target="_blank" >NU21-06-00086: Trénink dechových svalů jako způsob pre-habilitace před plicním resekčním zákrokem</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ERJ Open Research
ISSN
2312-0541
e-ISSN
2312-0541
Svazek periodika
10
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
00978-2023
Kód UT WoS článku
001340127300002
EID výsledku v databázi Scopus
2-s2.0-85205262631