Analysis of mutations in precision oncology using the automated, accurate, and user-friendly web tool PredictONCO
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F24%3A00080739" target="_blank" >RIV/00159816:_____/24:00080739 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/24:00138217 RIV/00216305:26230/24:PU156207 RIV/65269705:_____/24:00080739
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2001037024003982?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2001037024003982?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csbj.2024.11.026" target="_blank" >10.1016/j.csbj.2024.11.026</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of mutations in precision oncology using the automated, accurate, and user-friendly web tool PredictONCO
Popis výsledku v původním jazyce
Next-generation sequencing technology has created many new opportunities for clinical diagnostics, but it faces the challenge of functional annotation of identified mutations. Various algorithms have been developed to predict the impact of missense variants that influence oncogenic drivers. However, computational pipelines that handle biological data must integrate multiple software tools, which can add complexity and hinder nonspecialist users from accessing the pipeline. Here, we have developed an online user-friendly web server tool PredictONCO that is fully automated and has a low barrier to access. The tool models the structure of the mutant protein in the first step. Next, it calculates the protein stability change, pocket level information, evolutionary conservation, and changes in ionisation of catalytic amino acid residues, and uses them as the features in the machine-learning predictor. The XGBoost-based predictor was validated on an independent subset of held-out data, demonstrating areas under the receiver operating characteristic curve (ROC) of 0.97 and 0.94, and the average precision from the precision-recall curve of 0.99 and 0.94 for structure-based and sequence-based predictions, respectively. Finally, PredictONCO calculates the docking results of small molecules approved by regulatory authorities. We demonstrate the applicability of the tool by presenting its usage for variants in two cancer-associated proteins, cellular tumour antigen p53 and fibroblast growth factor receptor FGFR1. Our free web tool will assist with the interpretation of data from next-generation sequencing and navigate treatment strategies in clinical oncology: https://loschmidt.chemi.muni.cz/predictonco/.
Název v anglickém jazyce
Analysis of mutations in precision oncology using the automated, accurate, and user-friendly web tool PredictONCO
Popis výsledku anglicky
Next-generation sequencing technology has created many new opportunities for clinical diagnostics, but it faces the challenge of functional annotation of identified mutations. Various algorithms have been developed to predict the impact of missense variants that influence oncogenic drivers. However, computational pipelines that handle biological data must integrate multiple software tools, which can add complexity and hinder nonspecialist users from accessing the pipeline. Here, we have developed an online user-friendly web server tool PredictONCO that is fully automated and has a low barrier to access. The tool models the structure of the mutant protein in the first step. Next, it calculates the protein stability change, pocket level information, evolutionary conservation, and changes in ionisation of catalytic amino acid residues, and uses them as the features in the machine-learning predictor. The XGBoost-based predictor was validated on an independent subset of held-out data, demonstrating areas under the receiver operating characteristic curve (ROC) of 0.97 and 0.94, and the average precision from the precision-recall curve of 0.99 and 0.94 for structure-based and sequence-based predictions, respectively. Finally, PredictONCO calculates the docking results of small molecules approved by regulatory authorities. We demonstrate the applicability of the tool by presenting its usage for variants in two cancer-associated proteins, cellular tumour antigen p53 and fibroblast growth factor receptor FGFR1. Our free web tool will assist with the interpretation of data from next-generation sequencing and navigate treatment strategies in clinical oncology: https://loschmidt.chemi.muni.cz/predictonco/.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational and Structural Biotechnology Journal
ISSN
2001-0370
e-ISSN
2001-0370
Svazek periodika
24
Číslo periodika v rámci svazku
DEC 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
5
Strana od-do
734-738
Kód UT WoS článku
001372518900001
EID výsledku v databázi Scopus
2-s2.0-85210774075