Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analysis of mutations in precision oncology using the automated, accurate, and user-friendly web tool PredictONCO

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F24%3A00080739" target="_blank" >RIV/00159816:_____/24:00080739 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/24:00138217 RIV/00216305:26230/24:PU156207 RIV/65269705:_____/24:00080739

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2001037024003982?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2001037024003982?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.csbj.2024.11.026" target="_blank" >10.1016/j.csbj.2024.11.026</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis of mutations in precision oncology using the automated, accurate, and user-friendly web tool PredictONCO

  • Popis výsledku v původním jazyce

    Next-generation sequencing technology has created many new opportunities for clinical diagnostics, but it faces the challenge of functional annotation of identified mutations. Various algorithms have been developed to predict the impact of missense variants that influence oncogenic drivers. However, computational pipelines that handle biological data must integrate multiple software tools, which can add complexity and hinder nonspecialist users from accessing the pipeline. Here, we have developed an online user-friendly web server tool PredictONCO that is fully automated and has a low barrier to access. The tool models the structure of the mutant protein in the first step. Next, it calculates the protein stability change, pocket level information, evolutionary conservation, and changes in ionisation of catalytic amino acid residues, and uses them as the features in the machine-learning predictor. The XGBoost-based predictor was validated on an independent subset of held-out data, demonstrating areas under the receiver operating characteristic curve (ROC) of 0.97 and 0.94, and the average precision from the precision-recall curve of 0.99 and 0.94 for structure-based and sequence-based predictions, respectively. Finally, PredictONCO calculates the docking results of small molecules approved by regulatory authorities. We demonstrate the applicability of the tool by presenting its usage for variants in two cancer-associated proteins, cellular tumour antigen p53 and fibroblast growth factor receptor FGFR1. Our free web tool will assist with the interpretation of data from next-generation sequencing and navigate treatment strategies in clinical oncology: https://loschmidt.chemi.muni.cz/predictonco/.

  • Název v anglickém jazyce

    Analysis of mutations in precision oncology using the automated, accurate, and user-friendly web tool PredictONCO

  • Popis výsledku anglicky

    Next-generation sequencing technology has created many new opportunities for clinical diagnostics, but it faces the challenge of functional annotation of identified mutations. Various algorithms have been developed to predict the impact of missense variants that influence oncogenic drivers. However, computational pipelines that handle biological data must integrate multiple software tools, which can add complexity and hinder nonspecialist users from accessing the pipeline. Here, we have developed an online user-friendly web server tool PredictONCO that is fully automated and has a low barrier to access. The tool models the structure of the mutant protein in the first step. Next, it calculates the protein stability change, pocket level information, evolutionary conservation, and changes in ionisation of catalytic amino acid residues, and uses them as the features in the machine-learning predictor. The XGBoost-based predictor was validated on an independent subset of held-out data, demonstrating areas under the receiver operating characteristic curve (ROC) of 0.97 and 0.94, and the average precision from the precision-recall curve of 0.99 and 0.94 for structure-based and sequence-based predictions, respectively. Finally, PredictONCO calculates the docking results of small molecules approved by regulatory authorities. We demonstrate the applicability of the tool by presenting its usage for variants in two cancer-associated proteins, cellular tumour antigen p53 and fibroblast growth factor receptor FGFR1. Our free web tool will assist with the interpretation of data from next-generation sequencing and navigate treatment strategies in clinical oncology: https://loschmidt.chemi.muni.cz/predictonco/.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10608 - Biochemistry and molecular biology

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computational and Structural Biotechnology Journal

  • ISSN

    2001-0370

  • e-ISSN

    2001-0370

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    DEC 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    5

  • Strana od-do

    734-738

  • Kód UT WoS článku

    001372518900001

  • EID výsledku v databázi Scopus

    2-s2.0-85210774075