A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00177016%3A_____%2F24%3AN0000029" target="_blank" >RIV/00177016:_____/24:N0000029 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21670/24:00373012 RIV/00216208:11320/24:10491778
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1748-0221/19/02/C02016" target="_blank" >https://iopscience.iop.org/article/10.1088/1748-0221/19/02/C02016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1748-0221/19/02/C02016" target="_blank" >10.1088/1748-0221/19/02/C02016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition
Popis výsledku v původním jazyce
We characterize a novel instrument designed for radiation field decomposition and particle trajectory reconstruction for application in harsh radiation environments. The device consists of two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These detectors are interleaved with a set of neutron converters: 6LiF for thermal neutrons, polyethylene (PE) for fast neutrons above 1 MeV, and PE with an additional aluminum recoil proton filter for neutrons above ∼4 MeV. Application of the coincidence and anticoincidence technique together with pattern recognition allows improved separation of charged and neutral particles, their discrimination against γ-rays and assessment of the overall directionality of the fast neutron field. The instrument's charged particle tracking and separation capabilities were studied at the Danish Center for Particle Therapy (DCPT), the Proton Synchrotron, and Super Proton Synchrotron with protons (50–240 MeV), pions (1–10 GeV/c and 180 GeV/c). After developing temporal and spatial coincidence assignment methodology, we determine the relative amount of coincident detections as a function of the impact angle, present the device's impact angle resolving power (both in coincidence and anticoicidence channels). The detector response to neutrons was studied at the Czech Metrology Institute (CMI), at n_ToF and the Los Alamos Neutron Science Center (LANSCE), covering the entire spectrum from thermal up to 600 MeV. The measured tracks were assigned to their corresponding neutron energy by application of the time of flight technique. We present the achieved neutron detection efficiency as a function of neutron kinetic energy and demonstrate how the ratio of events found below the different converters can be used to assess the hardness of the neutron spectrum. As an application, we determine the neutron content within a PMMA phantom just behind the Bragg-peak during clinical irradiation condition with protons of 160 MeV.
Název v anglickém jazyce
A two-layer Timepix3 stack for improved charged particle tracking and radiation field decomposition
Popis výsledku anglicky
We characterize a novel instrument designed for radiation field decomposition and particle trajectory reconstruction for application in harsh radiation environments. The device consists of two Timepix3 assemblies with 500 µm thick silicon sensors in a face-to-face geometry. These detectors are interleaved with a set of neutron converters: 6LiF for thermal neutrons, polyethylene (PE) for fast neutrons above 1 MeV, and PE with an additional aluminum recoil proton filter for neutrons above ∼4 MeV. Application of the coincidence and anticoincidence technique together with pattern recognition allows improved separation of charged and neutral particles, their discrimination against γ-rays and assessment of the overall directionality of the fast neutron field. The instrument's charged particle tracking and separation capabilities were studied at the Danish Center for Particle Therapy (DCPT), the Proton Synchrotron, and Super Proton Synchrotron with protons (50–240 MeV), pions (1–10 GeV/c and 180 GeV/c). After developing temporal and spatial coincidence assignment methodology, we determine the relative amount of coincident detections as a function of the impact angle, present the device's impact angle resolving power (both in coincidence and anticoicidence channels). The detector response to neutrons was studied at the Czech Metrology Institute (CMI), at n_ToF and the Los Alamos Neutron Science Center (LANSCE), covering the entire spectrum from thermal up to 600 MeV. The measured tracks were assigned to their corresponding neutron energy by application of the time of flight technique. We present the achieved neutron detection efficiency as a function of neutron kinetic energy and demonstrate how the ratio of events found below the different converters can be used to assess the hardness of the neutron spectrum. As an application, we determine the neutron content within a PMMA phantom just behind the Bragg-peak during clinical irradiation condition with protons of 160 MeV.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/GM23-04869M" target="_blank" >GM23-04869M: Identifikace částic v experimentech fysiky vysokych energií a ve vesmíru s pokročilými detekčními systémy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Instrumentation
ISSN
1748-0221
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001182399000001
EID výsledku v databázi Scopus
—