Fitting the AFM force–distance curves the correct way
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00177016%3A_____%2F24%3AN0000137" target="_blank" >RIV/00177016:_____/24:N0000137 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1361-6501/ad8b60" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6501/ad8b60</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6501/ad8b60" target="_blank" >10.1088/1361-6501/ad8b60</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fitting the AFM force–distance curves the correct way
Popis výsledku v původním jazyce
Data fitting is an indispensable tool in modern metrology. However, as the models become more and more complex the most popular method, ordinary least squares regression, reaches its limit. As the relative uncertainty in the independent variable increases, we can no longer speak about an exactly known independent variable and an uncertain dependent variable. The increasing complexity of the measurement process may give rise to correlationsFurthermore correlations between data may become non negligible: typical sources are e.g. the use of reference samples or crosstalk between sensors. These problems can be treated with generalized least squares. A new algorithm–Optimum Estimate of Function Parameters by Iterated Linearization (OEFPIL) – has been recently suggested which can handle both a wide class of functions as well as general covariance matrices. We illustrate its application in the analysis of force distance curves in AFM which are used to evaluate the mechanical properties of samples such as the Young's modulus and adhesion. In this work we apply the new algorithm and compare the results to other methods. The uncertainties obtained by OEFPIL are in good agreement with uncertainties obtained by the Monte Carlo method but can be obtained in a more straightforward way.
Název v anglickém jazyce
Fitting the AFM force–distance curves the correct way
Popis výsledku anglicky
Data fitting is an indispensable tool in modern metrology. However, as the models become more and more complex the most popular method, ordinary least squares regression, reaches its limit. As the relative uncertainty in the independent variable increases, we can no longer speak about an exactly known independent variable and an uncertain dependent variable. The increasing complexity of the measurement process may give rise to correlationsFurthermore correlations between data may become non negligible: typical sources are e.g. the use of reference samples or crosstalk between sensors. These problems can be treated with generalized least squares. A new algorithm–Optimum Estimate of Function Parameters by Iterated Linearization (OEFPIL) – has been recently suggested which can handle both a wide class of functions as well as general covariance matrices. We illustrate its application in the analysis of force distance curves in AFM which are used to evaluate the mechanical properties of samples such as the Young's modulus and adhesion. In this work we apply the new algorithm and compare the results to other methods. The uncertainties obtained by OEFPIL are in good agreement with uncertainties obtained by the Monte Carlo method but can be obtained in a more straightforward way.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Measurement Science and Technology
ISSN
0957-0233
e-ISSN
1361-6501
Svazek periodika
36
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
001353756500001
EID výsledku v databázi Scopus
2-s2.0-85219424350