Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00209805%3A_____%2F19%3A00078216" target="_blank" >RIV/00209805:_____/19:00078216 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/19:00107609
Výsledek na webu
<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656695/" target="_blank" >https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656695/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.celrep.2019.06.046" target="_blank" >10.1016/j.celrep.2019.06.046</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry
Popis výsledku v původním jazyce
Accurate classification of breast tumors is vital for patient management decisions and enables more precise cancer treatment. Here, we present a quantitative proteotyping approach based on sequential windowed acquisition of all theoretical fragment ion spectra (SWATH) mass spectrometry and establish key proteins for breast tumor classification. The study is based on 96 tissue samples representing five conventional breast cancer subtypes. SWATH proteotype patterns largely recapitulate these subtypes; however, they also reveal varying heterogeneity within the conventional subtypes, with triple negative tumors being the most heterogeneous. Proteins that contribute most strongly to the proteotypebased classification include INPP4B, CDK1, and ERBB2 and are associated with estrogen receptor (ER) status, tumor grade status, and HER2 status. Although these three key proteins exhibit high levels of correlation with transcript levels (R > 0.67), general correlation did not exceed R = 0.29, indicating the value of protein-level measurements of diseaseregulated genes. Overall, this study highlights how cancer tissue proteotyping can lead to more accurate patient stratification.
Název v anglickém jazyce
Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry
Popis výsledku anglicky
Accurate classification of breast tumors is vital for patient management decisions and enables more precise cancer treatment. Here, we present a quantitative proteotyping approach based on sequential windowed acquisition of all theoretical fragment ion spectra (SWATH) mass spectrometry and establish key proteins for breast tumor classification. The study is based on 96 tissue samples representing five conventional breast cancer subtypes. SWATH proteotype patterns largely recapitulate these subtypes; however, they also reveal varying heterogeneity within the conventional subtypes, with triple negative tumors being the most heterogeneous. Proteins that contribute most strongly to the proteotypebased classification include INPP4B, CDK1, and ERBB2 and are associated with estrogen receptor (ER) status, tumor grade status, and HER2 status. Although these three key proteins exhibit high levels of correlation with transcript levels (R > 0.67), general correlation did not exceed R = 0.29, indicating the value of protein-level measurements of diseaseregulated genes. Overall, this study highlights how cancer tissue proteotyping can lead to more accurate patient stratification.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30204 - Oncology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cell Reports
ISSN
2211-1247
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
"832–843.e1–e7"
Kód UT WoS článku
000475582000021
EID výsledku v databázi Scopus
2-s2.0-85068466554