Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00209805%3A_____%2F20%3A00078372" target="_blank" >RIV/00209805:_____/20:00078372 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41588-019-0537-1" target="_blank" >https://www.nature.com/articles/s41588-019-0537-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41588-019-0537-1" target="_blank" >10.1038/s41588-019-0537-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes
Popis výsledku v původním jazyce
Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
Název v anglickém jazyce
Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes
Popis výsledku anglicky
Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30204 - Oncology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature genetics
ISSN
1061-4036
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
56-73
Kód UT WoS článku
000508163500002
EID výsledku v databázi Scopus
2-s2.0-85077675544