Predicting Cannabis Abuse Screening Test (CAST) Scores: A Recursive Partitioning Analysis Using Survey Data from Czech Republic, Italy, the Netherlands and Sweden
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F14%3A10287468" target="_blank" >RIV/00216208:11110/14:10287468 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1371/journal.pone.0108298" target="_blank" >http://dx.doi.org/10.1371/journal.pone.0108298</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0108298" target="_blank" >10.1371/journal.pone.0108298</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting Cannabis Abuse Screening Test (CAST) Scores: A Recursive Partitioning Analysis Using Survey Data from Czech Republic, Italy, the Netherlands and Sweden
Popis výsledku v původním jazyce
Introduction Cannabis is Europe's most commonly used illicit drug. Some users do not develop dependence or other problems, whereas others do. Many factors are associated with the occurrence of cannabis-related disorders. This makes it difficult to identify key risk factors and markers to profile at-risk cannabis users using traditional hypothesis-driven approaches. Therefore, the use of a data-mining technique called binary recursive partitioning is demonstrated in this study by creating a classification tree to profile at-risk users. Methods 59 variables on cannabis use and drug market experiences were extracted from an internet-based survey dataset collected in four European countries (Czech Republic, Italy, Netherlands and Sweden), n = 2617. These 59 potential predictors of problematic cannabis use were used to partition individual respondents into subgroups with low and high risk of having a cannabis use disorder, based on their responses on the Cannabis Abuse Screening Test. Both
Název v anglickém jazyce
Predicting Cannabis Abuse Screening Test (CAST) Scores: A Recursive Partitioning Analysis Using Survey Data from Czech Republic, Italy, the Netherlands and Sweden
Popis výsledku anglicky
Introduction Cannabis is Europe's most commonly used illicit drug. Some users do not develop dependence or other problems, whereas others do. Many factors are associated with the occurrence of cannabis-related disorders. This makes it difficult to identify key risk factors and markers to profile at-risk cannabis users using traditional hypothesis-driven approaches. Therefore, the use of a data-mining technique called binary recursive partitioning is demonstrated in this study by creating a classification tree to profile at-risk users. Methods 59 variables on cannabis use and drug market experiences were extracted from an internet-based survey dataset collected in four European countries (Czech Republic, Italy, Netherlands and Sweden), n = 2617. These 59 potential predictors of problematic cannabis use were used to partition individual respondents into subgroups with low and high risk of having a cannabis use disorder, based on their responses on the Cannabis Abuse Screening Test. Both
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FQ - Veřejné zdravotnictví, sociální lékařství
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS ONE
ISSN
1932-6203
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000345745400063
EID výsledku v databázi Scopus
—