Detecting Multiple Myeloma via Generalized Multiple-Instance Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F18%3A10376910" target="_blank" >RIV/00216208:11110/18:10376910 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/18:00321266
Výsledek na webu
<a href="https://doi.org/10.1117/12.2293112" target="_blank" >https://doi.org/10.1117/12.2293112</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2293112" target="_blank" >10.1117/12.2293112</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting Multiple Myeloma via Generalized Multiple-Instance Learning
Popis výsledku v původním jazyce
We address the task of automatic detection of lesions caused by multiple myeloma (MM) in femurs or other long bones from CT data. Such detection is already an important part of the multiple myeloma diagnosis and staging. However, it is so far performed mostly manually, which is very time consuming. We formulate the detection as a multiple instance learning (MIL) problem, where instances are grouped into bags and only bag labels are available. In our case, instances are regions in the image and bags correspond to images. This has the advantage of requiring only subject-level annotation (ground truth), which is much easier to get than voxel-level manual segmentation. We consider a generalization of the standard MIL formulation where we introduce a threshold on the number of required positive instances in positive bags. This corresponds better to the classification procedure used by the radiology experts and is more robust with respect to false positive instances. We extend several existing MIL algorithms to solve the generalized case by estimating the threshold during learning. We compare the proposed methods with the baseline method on a dataset of 220 subjects. We show that the generalized MIL formulation outperforms standard MIL methods for this task. For the task of distinguishing between healthy controls and MM patients with infiltrations, our best method makes almost no mistakes with a mean AUC of 0.982 and F-1 = 0.965. We outperform the baseline method significantly in all conducted experiments.
Název v anglickém jazyce
Detecting Multiple Myeloma via Generalized Multiple-Instance Learning
Popis výsledku anglicky
We address the task of automatic detection of lesions caused by multiple myeloma (MM) in femurs or other long bones from CT data. Such detection is already an important part of the multiple myeloma diagnosis and staging. However, it is so far performed mostly manually, which is very time consuming. We formulate the detection as a multiple instance learning (MIL) problem, where instances are grouped into bags and only bag labels are available. In our case, instances are regions in the image and bags correspond to images. This has the advantage of requiring only subject-level annotation (ground truth), which is much easier to get than voxel-level manual segmentation. We consider a generalization of the standard MIL formulation where we introduce a threshold on the number of required positive instances in positive bags. This corresponds better to the classification procedure used by the radiology experts and is more robust with respect to false positive instances. We extend several existing MIL algorithms to solve the generalized case by estimating the threshold during learning. We compare the proposed methods with the baseline method on a dataset of 220 subjects. We show that the generalized MIL formulation outperforms standard MIL methods for this task. For the task of distinguishing between healthy controls and MM patients with infiltrations, our best method makes almost no mistakes with a mean AUC of 0.982 and F-1 = 0.965. We outperform the baseline method significantly in all conducted experiments.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30224 - Radiology, nuclear medicine and medical imaging
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-15361S" target="_blank" >GA17-15361S: Učení lokálních konceptů z globálních trénovacích dat pro klasifikaci a segmentaci biomedicínských obrazů</a><br>
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Medical Imaging 2018: Image Processing
ISBN
978-1-5106-1638-7
ISSN
0277-786X
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
SPIE
Místo vydání
Bellingham
Místo konání akce
Houston
Datum konání akce
11. 2. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000435027500021