Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Regional gray matter changes and age predict individual treatment response in Parkinson's disease

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F19%3A10392918" target="_blank" >RIV/00216208:11110/19:10392918 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00023884:_____/19:00007987

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VOugUNzsLg" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VOugUNzsLg</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.nicl.2018.101636" target="_blank" >10.1016/j.nicl.2018.101636</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Regional gray matter changes and age predict individual treatment response in Parkinson's disease

  • Popis výsledku v původním jazyce

    We aimed at testing the potential of biomarkers in predicting individual patient response to dopaminergic therapy for Parkinson&apos;s disease. Treatment efficacy was assessed in 30 Parkinson&apos;s disease patients as motor symptoms improvement from unmedicated to medicated state as assessed by the Unified Parkinson&apos;s Disease Rating Scale score III. Patients were stratified into weak and strong responders according to the individual treatment response. A multiple regression was implemented to test the prediction accuracy of age, disease duration and treatment dose and length. Univariate voxel-based morphometry was applied to investigate differences between the two groups on age-corrected T1-weighted magnetic resonance images. Multivariate support vector machine classification was used to predict individual treatment response based on neuroimaging data. Among clinical data, increasing age predicted a weaker treatment response. Additionally, weak responders presented greater brain atrophy in the left temporoparietal operculum. Support vector machine classification revealed that gray matter density in this brain region, including additionally the supplementary and primary motor areas and the cerebellum, was able to differentiate weak and strong responders with 74% accuracy. Remarkably, age and regional gray matter density of the left temporoparietal operculum predicted both and independently treatment response as shown in a combined regression analysis. In conclusion, both increasing age and reduced gray matter density are valid and independent predictors of dopaminergic therapy response in Parkinson&apos;s disease

  • Název v anglickém jazyce

    Regional gray matter changes and age predict individual treatment response in Parkinson's disease

  • Popis výsledku anglicky

    We aimed at testing the potential of biomarkers in predicting individual patient response to dopaminergic therapy for Parkinson&apos;s disease. Treatment efficacy was assessed in 30 Parkinson&apos;s disease patients as motor symptoms improvement from unmedicated to medicated state as assessed by the Unified Parkinson&apos;s Disease Rating Scale score III. Patients were stratified into weak and strong responders according to the individual treatment response. A multiple regression was implemented to test the prediction accuracy of age, disease duration and treatment dose and length. Univariate voxel-based morphometry was applied to investigate differences between the two groups on age-corrected T1-weighted magnetic resonance images. Multivariate support vector machine classification was used to predict individual treatment response based on neuroimaging data. Among clinical data, increasing age predicted a weaker treatment response. Additionally, weak responders presented greater brain atrophy in the left temporoparietal operculum. Support vector machine classification revealed that gray matter density in this brain region, including additionally the supplementary and primary motor areas and the cerebellum, was able to differentiate weak and strong responders with 74% accuracy. Remarkably, age and regional gray matter density of the left temporoparietal operculum predicted both and independently treatment response as shown in a combined regression analysis. In conclusion, both increasing age and reduced gray matter density are valid and independent predictors of dopaminergic therapy response in Parkinson&apos;s disease

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-13323S" target="_blank" >GA16-13323S: Mikro a makro konektomika subtalamického jádra u člověka: vliv neuromodulace a dopaminové deplece</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    NeuroImage: Clinical

  • ISSN

    2213-1582

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    2019

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    6

  • Strana od-do

    101636

  • Kód UT WoS článku

    000460337700049

  • EID výsledku v databázi Scopus

    2-s2.0-85058530976