The sequence of amino acids as the basis for the model of biological activity of peptides
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F21%3A10425705" target="_blank" >RIV/00216208:11110/21:10425705 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DKF0.ikRLp" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DKF0.ikRLp</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00214-020-02707-8" target="_blank" >10.1007/s00214-020-02707-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The sequence of amino acids as the basis for the model of biological activity of peptides
Popis výsledku v původním jazyce
The algorithm of building up a model for the biological activity of peptides as a mathematical function of a sequence of amino acids is suggested. The general scheme is the following: The total set of available data is distributed into the active training set, passive training set, calibration set, and validation set. The training (both active and passive) and calibration sets are a system of generation of a model of biological activity where each amino acid obtains special correlation weight. The numerical data on the correlation weights calculated by the Monte Carlo method using the CORAL software (http://www.insilico.eu/coral). The target function aimed to give the best result for the calibration set (not for the training set). The final checkup of the model is carried out with data on the validation set (peptides, which are not visible during the creation of the model). Described computational experiments confirm the ability of the approach to be a tool for the design of predictive models for the biological activity of peptides (expressed by pIC50).
Název v anglickém jazyce
The sequence of amino acids as the basis for the model of biological activity of peptides
Popis výsledku anglicky
The algorithm of building up a model for the biological activity of peptides as a mathematical function of a sequence of amino acids is suggested. The general scheme is the following: The total set of available data is distributed into the active training set, passive training set, calibration set, and validation set. The training (both active and passive) and calibration sets are a system of generation of a model of biological activity where each amino acid obtains special correlation weight. The numerical data on the correlation weights calculated by the Monte Carlo method using the CORAL software (http://www.insilico.eu/coral). The target function aimed to give the best result for the calibration set (not for the training set). The final checkup of the model is carried out with data on the validation set (peptides, which are not visible during the creation of the model). Described computational experiments confirm the ability of the approach to be a tool for the design of predictive models for the biological activity of peptides (expressed by pIC50).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10600 - Biological sciences
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Chemistry Accounts
ISSN
1432-881X
e-ISSN
—
Svazek periodika
140
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
15
Kód UT WoS článku
000612860700001
EID výsledku v databázi Scopus
2-s2.0-85099942352