Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Presynaptic Dopaminergic Imaging Characterizes Patients with REM Sleep Behavior Disorder Due to Synucleinopathy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F24%3A10480012" target="_blank" >RIV/00216208:11110/24:10480012 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00064165:_____/24:10480012

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=a4eCZr_lve" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=a4eCZr_lve</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/ana.26902" target="_blank" >10.1002/ana.26902</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Presynaptic Dopaminergic Imaging Characterizes Patients with REM Sleep Behavior Disorder Due to Synucleinopathy

  • Popis výsledku v původním jazyce

    Objective: To apply a machine learning analysis to clinical and presynaptic dopaminergic imaging data of patients with rapid eye movement (REM) sleep behavior disorder (RBD) to predict the development of Parkinson disease (PD) and dementia with Lewy bodies (DLB). Methods: In this multicenter study of the International RBD study group, 173 patients (mean age 70.5 +- 6.3 years, 70.5% males) with polysomnography-confirmed RBD who eventually phenoconverted to overt alpha-synucleinopathy (RBD due to synucleinopathy) were enrolled, and underwent baseline presynaptic dopaminergic imaging and clinical assessment, including motor, cognitive, olfaction, and constipation evaluation. For comparison, 232 RBD non-phenoconvertor patients (67.6 +- 7.1 years, 78.4% males) and 160 controls (68.2 +- 7.2 years, 53.1% males) were enrolled. Imaging and clinical features were analyzed by machine learning to determine predictors of phenoconversion. Results: Machine learning analysis showed that clinical data alone poorly predicted phenoconversion. Presynaptic dopaminergic imaging significantly improved the prediction, especially in combination with clinical data, with 77% sensitivity and 85% specificity in differentiating RBD due to synucleinopathy from non phenoconverted RBD patients, and 85% sensitivity and 86% specificity in discriminating PD-converters from DLB-converters. Quantification of presynaptic dopaminergic imaging showed that an empirical z-score cutoff of -1.0 at the most affected hemisphere putamen characterized RBD due to synucleinopathy patients, while a cutoff of -1.0 at the most affected hemisphere putamen/caudate ratio characterized PD-converters. Interpretation: Clinical data alone poorly predicted phenoconversion in RBD due to synucleinopathy patients. Conversely, presynaptic dopaminergic imaging allows a good prediction of forthcoming phenoconversion diagnosis. This finding may be used in designing future disease-modifying trials.

  • Název v anglickém jazyce

    Presynaptic Dopaminergic Imaging Characterizes Patients with REM Sleep Behavior Disorder Due to Synucleinopathy

  • Popis výsledku anglicky

    Objective: To apply a machine learning analysis to clinical and presynaptic dopaminergic imaging data of patients with rapid eye movement (REM) sleep behavior disorder (RBD) to predict the development of Parkinson disease (PD) and dementia with Lewy bodies (DLB). Methods: In this multicenter study of the International RBD study group, 173 patients (mean age 70.5 +- 6.3 years, 70.5% males) with polysomnography-confirmed RBD who eventually phenoconverted to overt alpha-synucleinopathy (RBD due to synucleinopathy) were enrolled, and underwent baseline presynaptic dopaminergic imaging and clinical assessment, including motor, cognitive, olfaction, and constipation evaluation. For comparison, 232 RBD non-phenoconvertor patients (67.6 +- 7.1 years, 78.4% males) and 160 controls (68.2 +- 7.2 years, 53.1% males) were enrolled. Imaging and clinical features were analyzed by machine learning to determine predictors of phenoconversion. Results: Machine learning analysis showed that clinical data alone poorly predicted phenoconversion. Presynaptic dopaminergic imaging significantly improved the prediction, especially in combination with clinical data, with 77% sensitivity and 85% specificity in differentiating RBD due to synucleinopathy from non phenoconverted RBD patients, and 85% sensitivity and 86% specificity in discriminating PD-converters from DLB-converters. Quantification of presynaptic dopaminergic imaging showed that an empirical z-score cutoff of -1.0 at the most affected hemisphere putamen characterized RBD due to synucleinopathy patients, while a cutoff of -1.0 at the most affected hemisphere putamen/caudate ratio characterized PD-converters. Interpretation: Clinical data alone poorly predicted phenoconversion in RBD due to synucleinopathy patients. Conversely, presynaptic dopaminergic imaging allows a good prediction of forthcoming phenoconversion diagnosis. This finding may be used in designing future disease-modifying trials.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Neurology

  • ISSN

    0364-5134

  • e-ISSN

    1531-8249

  • Svazek periodika

    95

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    1178-1192

  • Kód UT WoS článku

    001184868100001

  • EID výsledku v databázi Scopus

    2-s2.0-85187487552