Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Clinical decision-making in benzodiazepine deprescribing by healthcare providers vs. AI-assisted approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F24%3A10487615" target="_blank" >RIV/00216208:11110/24:10487615 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11160/24:10487615

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5kFY6XZxZf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5kFY6XZxZf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/bcp.15963" target="_blank" >10.1111/bcp.15963</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Clinical decision-making in benzodiazepine deprescribing by healthcare providers vs. AI-assisted approach

  • Popis výsledku v původním jazyce

    Aims: The aim of this study was to compare the clinical decision-making for benzodiazepine deprescribing between a healthcare provider (HCP) and an artificial intelligence (AI) chatbot GPT4 (ChatGPT-4). Methods: We analysed real-world data from a Croatian cohort of community-dwelling benzodiazepine patients (n = 154) within the EuroAgeism H2020 ESR 7 project. HCPs evaluated the data using pre-established deprescribing criteria to assess benzodiazepine discontinuation potential. The research team devised and tested AI prompts to ensure consistency with HCP judgements. An independent researcher employed ChatGPT-4 with predetermined prompts to simulate clinical decisions for each patient case. Data derived from human-HCP and ChatGPT-4 decisions were compared for agreement rates and Cohen&apos;s kappa. Results: Both HPC and ChatGPT identified patients for benzodiazepine deprescribing (96.1% and 89.6%, respectively), showing an agreement rate of 95% (kappa = .200, P = .012). Agreement on four deprescribing criteria ranged from 74.7% to 91.3% (lack of indication kappa = .352, P &lt; .001; prolonged use kappa = .088, P = .280; safety concerns kappa = .123, P = .006; incorrect dosage kappa = .264, P = .001). Important limitations of GPT-4 responses were identified, including 22.1% ambiguous outputs, generic answers and inaccuracies, posing inappropriate decision-making risks. Conclusions: While AI-HCP agreement is substantial, sole AI reliance poses a risk for unsuitable clinical decision-making. This study&apos;s findings reveal both strengths and areas for enhancement of ChatGPT-4 in the deprescribing recommendations within a real-world sample. Our study underscores the need for additional research on chatbot functionality in patient therapy decision-making, further fostering the advancement of AI for optimal performance.

  • Název v anglickém jazyce

    Clinical decision-making in benzodiazepine deprescribing by healthcare providers vs. AI-assisted approach

  • Popis výsledku anglicky

    Aims: The aim of this study was to compare the clinical decision-making for benzodiazepine deprescribing between a healthcare provider (HCP) and an artificial intelligence (AI) chatbot GPT4 (ChatGPT-4). Methods: We analysed real-world data from a Croatian cohort of community-dwelling benzodiazepine patients (n = 154) within the EuroAgeism H2020 ESR 7 project. HCPs evaluated the data using pre-established deprescribing criteria to assess benzodiazepine discontinuation potential. The research team devised and tested AI prompts to ensure consistency with HCP judgements. An independent researcher employed ChatGPT-4 with predetermined prompts to simulate clinical decisions for each patient case. Data derived from human-HCP and ChatGPT-4 decisions were compared for agreement rates and Cohen&apos;s kappa. Results: Both HPC and ChatGPT identified patients for benzodiazepine deprescribing (96.1% and 89.6%, respectively), showing an agreement rate of 95% (kappa = .200, P = .012). Agreement on four deprescribing criteria ranged from 74.7% to 91.3% (lack of indication kappa = .352, P &lt; .001; prolonged use kappa = .088, P = .280; safety concerns kappa = .123, P = .006; incorrect dosage kappa = .264, P = .001). Important limitations of GPT-4 responses were identified, including 22.1% ambiguous outputs, generic answers and inaccuracies, posing inappropriate decision-making risks. Conclusions: While AI-HCP agreement is substantial, sole AI reliance poses a risk for unsuitable clinical decision-making. This study&apos;s findings reveal both strengths and areas for enhancement of ChatGPT-4 in the deprescribing recommendations within a real-world sample. Our study underscores the need for additional research on chatbot functionality in patient therapy decision-making, further fostering the advancement of AI for optimal performance.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30104 - Pharmacology and pharmacy

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    British Journal of Clinical Pharmacology

  • ISSN

    0306-5251

  • e-ISSN

    1365-2125

  • Svazek periodika

    90

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    662-674

  • Kód UT WoS článku

    001113011000001

  • EID výsledku v databázi Scopus

    2-s2.0-85178459514