Intrinsically explainable deep learning architecture for semantic segmentation of histological structures in heart tissue
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11120%2F24%3A43927055" target="_blank" >RIV/00216208:11120/24:43927055 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11130/24:10480529
Výsledek na webu
<a href="https://doi.org/10.1016/j.compbiomed.2024.108624" target="_blank" >https://doi.org/10.1016/j.compbiomed.2024.108624</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compbiomed.2024.108624" target="_blank" >10.1016/j.compbiomed.2024.108624</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intrinsically explainable deep learning architecture for semantic segmentation of histological structures in heart tissue
Popis výsledku v původním jazyce
BACKGROUND: Analysis of structures contained in tissue samples and the relevant contextual information is of utmost importance to histopathologists during diagnosis. Cardiac biopsies require in-depth analysis of the relationships between biological structures. Statistical measures are insufficient for determining a model's viability and applicability in the diagnostic process. A deeper understanding of predictions is necessary in order to support histopathologists. METHODS: We propose a method for providing supporting information in the form of segmentation of histological structures to histopathologists based on these principles. The proposed method utilizes nuclei type and density information in addition to standard image input provided at two different zoom levels for the semantic segmentation of blood vessels, inflammation, and endocardium in heart tissue. RESULTS: The proposed method was able to reach state-of-the-art segmentation results. The overall quality and viability of the predictions was qualitatively evaluated by two pathologists and a histotechnologist. CONCLUSIONS: The decision process of the proposed deep learning model utilizes the provided information sources correctly and simulates the decision process of histopathologists via the usage of a custom-designed attention gate that provides a combination of spatial and encoder attention mechanisms. The implementation is available at https://github.com/mathali/IEDL-segmentation-of-heart-tissue.
Název v anglickém jazyce
Intrinsically explainable deep learning architecture for semantic segmentation of histological structures in heart tissue
Popis výsledku anglicky
BACKGROUND: Analysis of structures contained in tissue samples and the relevant contextual information is of utmost importance to histopathologists during diagnosis. Cardiac biopsies require in-depth analysis of the relationships between biological structures. Statistical measures are insufficient for determining a model's viability and applicability in the diagnostic process. A deeper understanding of predictions is necessary in order to support histopathologists. METHODS: We propose a method for providing supporting information in the form of segmentation of histological structures to histopathologists based on these principles. The proposed method utilizes nuclei type and density information in addition to standard image input provided at two different zoom levels for the semantic segmentation of blood vessels, inflammation, and endocardium in heart tissue. RESULTS: The proposed method was able to reach state-of-the-art segmentation results. The overall quality and viability of the predictions was qualitatively evaluated by two pathologists and a histotechnologist. CONCLUSIONS: The decision process of the proposed deep learning model utilizes the provided information sources correctly and simulates the decision process of histopathologists via the usage of a custom-designed attention gate that provides a combination of spatial and encoder attention mechanisms. The implementation is available at https://github.com/mathali/IEDL-segmentation-of-heart-tissue.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
30109 - Pathology
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers in Biology and Medicine
ISSN
0010-4825
e-ISSN
1879-0534
Svazek periodika
177
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
108624
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85193784556