Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Intrinsically explainable deep learning architecture for semantic segmentation of histological structures in heart tissue

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11120%2F24%3A43927055" target="_blank" >RIV/00216208:11120/24:43927055 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11130/24:10480529

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.compbiomed.2024.108624" target="_blank" >https://doi.org/10.1016/j.compbiomed.2024.108624</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compbiomed.2024.108624" target="_blank" >10.1016/j.compbiomed.2024.108624</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Intrinsically explainable deep learning architecture for semantic segmentation of histological structures in heart tissue

  • Popis výsledku v původním jazyce

    BACKGROUND: Analysis of structures contained in tissue samples and the relevant contextual information is of utmost importance to histopathologists during diagnosis. Cardiac biopsies require in-depth analysis of the relationships between biological structures. Statistical measures are insufficient for determining a model&apos;s viability and applicability in the diagnostic process. A deeper understanding of predictions is necessary in order to support histopathologists. METHODS: We propose a method for providing supporting information in the form of segmentation of histological structures to histopathologists based on these principles. The proposed method utilizes nuclei type and density information in addition to standard image input provided at two different zoom levels for the semantic segmentation of blood vessels, inflammation, and endocardium in heart tissue. RESULTS: The proposed method was able to reach state-of-the-art segmentation results. The overall quality and viability of the predictions was qualitatively evaluated by two pathologists and a histotechnologist. CONCLUSIONS: The decision process of the proposed deep learning model utilizes the provided information sources correctly and simulates the decision process of histopathologists via the usage of a custom-designed attention gate that provides a combination of spatial and encoder attention mechanisms. The implementation is available at https://github.com/mathali/IEDL-segmentation-of-heart-tissue.

  • Název v anglickém jazyce

    Intrinsically explainable deep learning architecture for semantic segmentation of histological structures in heart tissue

  • Popis výsledku anglicky

    BACKGROUND: Analysis of structures contained in tissue samples and the relevant contextual information is of utmost importance to histopathologists during diagnosis. Cardiac biopsies require in-depth analysis of the relationships between biological structures. Statistical measures are insufficient for determining a model&apos;s viability and applicability in the diagnostic process. A deeper understanding of predictions is necessary in order to support histopathologists. METHODS: We propose a method for providing supporting information in the form of segmentation of histological structures to histopathologists based on these principles. The proposed method utilizes nuclei type and density information in addition to standard image input provided at two different zoom levels for the semantic segmentation of blood vessels, inflammation, and endocardium in heart tissue. RESULTS: The proposed method was able to reach state-of-the-art segmentation results. The overall quality and viability of the predictions was qualitatively evaluated by two pathologists and a histotechnologist. CONCLUSIONS: The decision process of the proposed deep learning model utilizes the provided information sources correctly and simulates the decision process of histopathologists via the usage of a custom-designed attention gate that provides a combination of spatial and encoder attention mechanisms. The implementation is available at https://github.com/mathali/IEDL-segmentation-of-heart-tissue.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    30109 - Pathology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers in Biology and Medicine

  • ISSN

    0010-4825

  • e-ISSN

    1879-0534

  • Svazek periodika

    177

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    108624

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85193784556