Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ensemble methods in combination with compartment models for blood glucose level prediction in type 1 diabetes mellitus

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11130%2F20%3A10412530" target="_blank" >RIV/00216208:11130/20:10412530 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21460/20:00341826 RIV/68407700:21730/20:00341826 RIV/00064203:_____/20:10412530

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4p0VPfPeBK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4p0VPfPeBK</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cmpb.2020.105628" target="_blank" >10.1016/j.cmpb.2020.105628</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ensemble methods in combination with compartment models for blood glucose level prediction in type 1 diabetes mellitus

  • Popis výsledku v původním jazyce

    Backgroung: Type 1 diabetes is a disease that adversely affects the daily life of a large percentage of people worldwide. Daily glucose levels regulation and useful advices provided to patients regarding their diet are essential for diabetes treatment. For this reason, the interest of the academic community has focused on developing innovative systems, such as decision support systems, based on glucose prediction algorithms. The present work presents the predictive capabilities of ensemble methods compared to individual algorithms while combining each method with compartment models for fast acting insulin absorption simulation. Methods: An approach of combining widely used glycemia prediction algorithms is proposed and three different ensemble methods (Linear, Bagging and Boosting metaregressor) are applied and evaluated on their ability to provide accurate predictions for 30, 45 and 60 minutes ahead prediction horizon. Moreover, glycemia levels, long and short acting insulin dosages and consumed carbohydrates from six type one people with diabetes are used as input data and the results are evaluated in terms of root-mean square error and Clarke error grid analysis. Results: According to results, ensemble methods can provide more accurate glucose concentration in comparison to individual algorithms. Bagging metaregressor, specifically, performed better than individual algorithms in all prediction horizons for small datasets. Bagging ensemble method improved the percentage in zone A according to Clarkes error grid analysis by 4% and in some cases by 9%. Moreover, compartment models are proved to improve results in combination with any method at any prediction horizon. This strengthen the potential practical usefulness of the ensemble methods and the importance of building accurate compartment models.

  • Název v anglickém jazyce

    Ensemble methods in combination with compartment models for blood glucose level prediction in type 1 diabetes mellitus

  • Popis výsledku anglicky

    Backgroung: Type 1 diabetes is a disease that adversely affects the daily life of a large percentage of people worldwide. Daily glucose levels regulation and useful advices provided to patients regarding their diet are essential for diabetes treatment. For this reason, the interest of the academic community has focused on developing innovative systems, such as decision support systems, based on glucose prediction algorithms. The present work presents the predictive capabilities of ensemble methods compared to individual algorithms while combining each method with compartment models for fast acting insulin absorption simulation. Methods: An approach of combining widely used glycemia prediction algorithms is proposed and three different ensemble methods (Linear, Bagging and Boosting metaregressor) are applied and evaluated on their ability to provide accurate predictions for 30, 45 and 60 minutes ahead prediction horizon. Moreover, glycemia levels, long and short acting insulin dosages and consumed carbohydrates from six type one people with diabetes are used as input data and the results are evaluated in terms of root-mean square error and Clarke error grid analysis. Results: According to results, ensemble methods can provide more accurate glucose concentration in comparison to individual algorithms. Bagging metaregressor, specifically, performed better than individual algorithms in all prediction horizons for small datasets. Bagging ensemble method improved the percentage in zone A according to Clarkes error grid analysis by 4% and in some cases by 9%. Moreover, compartment models are proved to improve results in combination with any method at any prediction horizon. This strengthen the potential practical usefulness of the ensemble methods and the importance of building accurate compartment models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30202 - Endocrinology and metabolism (including diabetes, hormones)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/NV15-25710A" target="_blank" >NV15-25710A: Identifikace individuální dynamiky glykemických exkurzí u pacientů s diabetem pro zlepšení rozhodovacích postupů ovlivňujících dávkování inzulínu</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer Methods and Programs in Biomedicine

  • ISSN

    0169-2607

  • e-ISSN

  • Svazek periodika

    196

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    7

  • Strana od-do

    105628

  • Kód UT WoS článku

    000580609200049

  • EID výsledku v databázi Scopus

    2-s2.0-85087338776