Ensemble methods in combination with compartment models for blood glucose level prediction in type 1 diabetes mellitus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11130%2F20%3A10412530" target="_blank" >RIV/00216208:11130/20:10412530 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21460/20:00341826 RIV/68407700:21730/20:00341826 RIV/00064203:_____/20:10412530
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4p0VPfPeBK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4p0VPfPeBK</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cmpb.2020.105628" target="_blank" >10.1016/j.cmpb.2020.105628</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ensemble methods in combination with compartment models for blood glucose level prediction in type 1 diabetes mellitus
Popis výsledku v původním jazyce
Backgroung: Type 1 diabetes is a disease that adversely affects the daily life of a large percentage of people worldwide. Daily glucose levels regulation and useful advices provided to patients regarding their diet are essential for diabetes treatment. For this reason, the interest of the academic community has focused on developing innovative systems, such as decision support systems, based on glucose prediction algorithms. The present work presents the predictive capabilities of ensemble methods compared to individual algorithms while combining each method with compartment models for fast acting insulin absorption simulation. Methods: An approach of combining widely used glycemia prediction algorithms is proposed and three different ensemble methods (Linear, Bagging and Boosting metaregressor) are applied and evaluated on their ability to provide accurate predictions for 30, 45 and 60 minutes ahead prediction horizon. Moreover, glycemia levels, long and short acting insulin dosages and consumed carbohydrates from six type one people with diabetes are used as input data and the results are evaluated in terms of root-mean square error and Clarke error grid analysis. Results: According to results, ensemble methods can provide more accurate glucose concentration in comparison to individual algorithms. Bagging metaregressor, specifically, performed better than individual algorithms in all prediction horizons for small datasets. Bagging ensemble method improved the percentage in zone A according to Clarkes error grid analysis by 4% and in some cases by 9%. Moreover, compartment models are proved to improve results in combination with any method at any prediction horizon. This strengthen the potential practical usefulness of the ensemble methods and the importance of building accurate compartment models.
Název v anglickém jazyce
Ensemble methods in combination with compartment models for blood glucose level prediction in type 1 diabetes mellitus
Popis výsledku anglicky
Backgroung: Type 1 diabetes is a disease that adversely affects the daily life of a large percentage of people worldwide. Daily glucose levels regulation and useful advices provided to patients regarding their diet are essential for diabetes treatment. For this reason, the interest of the academic community has focused on developing innovative systems, such as decision support systems, based on glucose prediction algorithms. The present work presents the predictive capabilities of ensemble methods compared to individual algorithms while combining each method with compartment models for fast acting insulin absorption simulation. Methods: An approach of combining widely used glycemia prediction algorithms is proposed and three different ensemble methods (Linear, Bagging and Boosting metaregressor) are applied and evaluated on their ability to provide accurate predictions for 30, 45 and 60 minutes ahead prediction horizon. Moreover, glycemia levels, long and short acting insulin dosages and consumed carbohydrates from six type one people with diabetes are used as input data and the results are evaluated in terms of root-mean square error and Clarke error grid analysis. Results: According to results, ensemble methods can provide more accurate glucose concentration in comparison to individual algorithms. Bagging metaregressor, specifically, performed better than individual algorithms in all prediction horizons for small datasets. Bagging ensemble method improved the percentage in zone A according to Clarkes error grid analysis by 4% and in some cases by 9%. Moreover, compartment models are proved to improve results in combination with any method at any prediction horizon. This strengthen the potential practical usefulness of the ensemble methods and the importance of building accurate compartment models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30202 - Endocrinology and metabolism (including diabetes, hormones)
Návaznosti výsledku
Projekt
<a href="/cs/project/NV15-25710A" target="_blank" >NV15-25710A: Identifikace individuální dynamiky glykemických exkurzí u pacientů s diabetem pro zlepšení rozhodovacích postupů ovlivňujících dávkování inzulínu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Methods and Programs in Biomedicine
ISSN
0169-2607
e-ISSN
—
Svazek periodika
196
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
105628
Kód UT WoS článku
000580609200049
EID výsledku v databázi Scopus
2-s2.0-85087338776