Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Component-resolved diagnosis and beyond: Multivariable regression models to predict severity of hazelnut allergy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11140%2F18%3A10375221" target="_blank" >RIV/00216208:11140/18:10375221 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1111/all.13328" target="_blank" >https://doi.org/10.1111/all.13328</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/all.13328" target="_blank" >10.1111/all.13328</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Component-resolved diagnosis and beyond: Multivariable regression models to predict severity of hazelnut allergy

  • Popis výsledku v původním jazyce

    BackgroundComponent-resolved diagnosis (CRD) has revealed significant associations between IgE against individual allergens and severity of hazelnut allergy. Less attention has been given to combining them with clinical factors in predicting severity. AimTo analyze associations between severity and sensitization patterns, patient characteristics and clinical history, and to develop models to improve predictive accuracy. MethodsPatients reporting hazelnut allergy (n = 423) from 12 European cities were tested for IgE against individual hazelnut allergens. Symptoms (reported and during Double-blind placebo-controlled food challenge [DBPCFC]) were categorized in mild, moderate, and severe. Multiple regression models to predict severity were generated from clinical factors and sensitization patterns (CRD- and extract-based). Odds ratios (ORs) and areas under receiver-operating characteristic (ROC) curves (AUCs) were used to evaluate their predictive value. ResultsCor a 9 and 14 were positively (OR 10.5 and 10.1, respectively), and Cor a 1 negatively (OR 0.14) associated with severe symptoms during DBPCFC, with AUCs of 0.70-073. Combining Cor a 1 and 9 improved this to 0.76. A model using a combination of atopic dermatitis (risk), pollen allergy (protection), IgE against Cor a 14 (risk) and walnut (risk) increased the AUC to 0.91. At 92% sensitivity, the specificity was 76.3%, and the positive and negative predictive values 62.2% and 95.7%, respectively. For reported symptoms, associations and generated models proved to be almost identical but weaker. ConclusionA model combining CRD with clinical background and extract-based serology is superior to CRD alone in assessing the risk of severe reactions to hazelnut, particular in ruling out severe reactions.

  • Název v anglickém jazyce

    Component-resolved diagnosis and beyond: Multivariable regression models to predict severity of hazelnut allergy

  • Popis výsledku anglicky

    BackgroundComponent-resolved diagnosis (CRD) has revealed significant associations between IgE against individual allergens and severity of hazelnut allergy. Less attention has been given to combining them with clinical factors in predicting severity. AimTo analyze associations between severity and sensitization patterns, patient characteristics and clinical history, and to develop models to improve predictive accuracy. MethodsPatients reporting hazelnut allergy (n = 423) from 12 European cities were tested for IgE against individual hazelnut allergens. Symptoms (reported and during Double-blind placebo-controlled food challenge [DBPCFC]) were categorized in mild, moderate, and severe. Multiple regression models to predict severity were generated from clinical factors and sensitization patterns (CRD- and extract-based). Odds ratios (ORs) and areas under receiver-operating characteristic (ROC) curves (AUCs) were used to evaluate their predictive value. ResultsCor a 9 and 14 were positively (OR 10.5 and 10.1, respectively), and Cor a 1 negatively (OR 0.14) associated with severe symptoms during DBPCFC, with AUCs of 0.70-073. Combining Cor a 1 and 9 improved this to 0.76. A model using a combination of atopic dermatitis (risk), pollen allergy (protection), IgE against Cor a 14 (risk) and walnut (risk) increased the AUC to 0.91. At 92% sensitivity, the specificity was 76.3%, and the positive and negative predictive values 62.2% and 95.7%, respectively. For reported symptoms, associations and generated models proved to be almost identical but weaker. ConclusionA model combining CRD with clinical background and extract-based serology is superior to CRD alone in assessing the risk of severe reactions to hazelnut, particular in ruling out severe reactions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30225 - Allergy

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Allergy

  • ISSN

    0105-4538

  • e-ISSN

  • Svazek periodika

    73

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    549-559

  • Kód UT WoS článku

    000425622700005

  • EID výsledku v databázi Scopus

    2-s2.0-85034951161