MicrAnt: Towards Regression Task Oriented Annotation Tool for Microscopic Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11140%2F20%3A10418632" target="_blank" >RIV/00216208:11140/20:10418632 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00669806:_____/20:10418632
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-51002-2_15" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-51002-2_15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-51002-2_15" target="_blank" >10.1007/978-3-030-51002-2_15</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MicrAnt: Towards Regression Task Oriented Annotation Tool for Microscopic Images
Popis výsledku v původním jazyce
Annotating a dataset for training a Supervised Machine Learning algorithm is time and annotator's attention intensive. Our goal was to create a tool that would enable us to create annotations of the dataset with minimal demands on expert's time. Inspired by applications such as Tinder, we have created an annotation tool for describing microscopic images. A graphical user interface is used to select from a couple of images the one with the higher value of the examined parameter. Two experiments were performed. The first compares the speed of annotation of our application with the commonly used tool for processing microscopic images. In the second experiment, the texture description was compared with the annotations from MicrAnt application and commonly used application. The results showed that the processing time using our application is 3 times lower and the Spearman coefficient increases by 0.05 than using a commonly used application. In an experiment, we have shown that the annotations processed using our application increase the correlation of the studied parameter and texture descriptors compared with manual annotations.
Název v anglickém jazyce
MicrAnt: Towards Regression Task Oriented Annotation Tool for Microscopic Images
Popis výsledku anglicky
Annotating a dataset for training a Supervised Machine Learning algorithm is time and annotator's attention intensive. Our goal was to create a tool that would enable us to create annotations of the dataset with minimal demands on expert's time. Inspired by applications such as Tinder, we have created an annotation tool for describing microscopic images. A graphical user interface is used to select from a couple of images the one with the higher value of the examined parameter. Two experiments were performed. The first compares the speed of annotation of our application with the commonly used tool for processing microscopic images. In the second experiment, the texture description was compared with the annotations from MicrAnt application and commonly used application. The results showed that the processing time using our application is 3 times lower and the Spearman coefficient increases by 0.05 than using a commonly used application. In an experiment, we have shown that the annotations processed using our application increase the correlation of the studied parameter and texture descriptors compared with manual annotations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30502 - Other medical science
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007280" target="_blank" >EF17_048/0007280: Aplikace moderních technologií v medicíně a průmyslu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-3-030-51001-5
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
209-218
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Novi Sad; Serbia
Datum konání akce
16. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—