MIMO U-Net: Efficient Cell Segmentation and Counting in Microscopy Image Sequences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11140%2F23%3A10469133" target="_blank" >RIV/00216208:11140/23:10469133 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1117/12.2655627" target="_blank" >https://doi.org/10.1117/12.2655627</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2655627" target="_blank" >10.1117/12.2655627</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MIMO U-Net: Efficient Cell Segmentation and Counting in Microscopy Image Sequences
Popis výsledku v původním jazyce
Automatic cell quantification in microscopy images can accelerate biomedical research. There has been significant progress in the 3D segmentation of neurons in fluorescence microscopy. However, it remains a challenge in bright-field microscopy due to the low Signal-to-Noise Ratio and signals from out-of-focus neurons. Automatic neuron counting in bright-field z-stacks is often performed on Extended Depth of Field images or on only one thick focal plane image. However, resolving overlapping cells that are located at different z-depths is a challenge. The overlap can be resolved by counting every neuron in its best focus z-plane because of their separation on the z-axis. Unbiased stereology is the state-of-the-art for total cell number estimation. The segmentation boundary for cells is required in order to incorporate the unbiased counting rule for stereology application. Hence, we perform counting via segmentation. We propose to achieve neuron segmentation in the optimal focal plane by posing the binary segmentation task as a multi-class multi-label task. Also, we propose to efficiently use a 2D U-Net for inter-image feature learning in a Multiple Input Multiple Output system that poses a binary segmentation task as a multi-class multi-label segmentation task. We demonstrate the accuracy and efficiency of the MIMO approach using a bright-field microscopy z-stack dataset locally prepared by an expert. The proposed MIMO approach is also validated on a dataset from the Cell Tracking Challenge achieving comparable results to a compared method equipped with memory units. Our z-stack dataset is available at https://tinyurl.com/wncfxn9m.
Název v anglickém jazyce
MIMO U-Net: Efficient Cell Segmentation and Counting in Microscopy Image Sequences
Popis výsledku anglicky
Automatic cell quantification in microscopy images can accelerate biomedical research. There has been significant progress in the 3D segmentation of neurons in fluorescence microscopy. However, it remains a challenge in bright-field microscopy due to the low Signal-to-Noise Ratio and signals from out-of-focus neurons. Automatic neuron counting in bright-field z-stacks is often performed on Extended Depth of Field images or on only one thick focal plane image. However, resolving overlapping cells that are located at different z-depths is a challenge. The overlap can be resolved by counting every neuron in its best focus z-plane because of their separation on the z-axis. Unbiased stereology is the state-of-the-art for total cell number estimation. The segmentation boundary for cells is required in order to incorporate the unbiased counting rule for stereology application. Hence, we perform counting via segmentation. We propose to achieve neuron segmentation in the optimal focal plane by posing the binary segmentation task as a multi-class multi-label task. Also, we propose to efficiently use a 2D U-Net for inter-image feature learning in a Multiple Input Multiple Output system that poses a binary segmentation task as a multi-class multi-label segmentation task. We demonstrate the accuracy and efficiency of the MIMO approach using a bright-field microscopy z-stack dataset locally prepared by an expert. The proposed MIMO approach is also validated on a dataset from the Cell Tracking Challenge achieving comparable results to a compared method equipped with memory units. Our z-stack dataset is available at https://tinyurl.com/wncfxn9m.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30100 - Basic medicine
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
MEDICAL IMAGING 2023
ISBN
978-1-5106-6047-2
ISSN
1605-7422
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
SPIE-INT SOC OPTICAL ENGINEERING
Místo vydání
BELLINGHAM
Místo konání akce
San Diego
Datum konání akce
19. 2. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001011463700025