Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

MIMO U-Net: Efficient Cell Segmentation and Counting in Microscopy Image Sequences

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11140%2F23%3A10469133" target="_blank" >RIV/00216208:11140/23:10469133 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1117/12.2655627" target="_blank" >https://doi.org/10.1117/12.2655627</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2655627" target="_blank" >10.1117/12.2655627</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    MIMO U-Net: Efficient Cell Segmentation and Counting in Microscopy Image Sequences

  • Popis výsledku v původním jazyce

    Automatic cell quantification in microscopy images can accelerate biomedical research. There has been significant progress in the 3D segmentation of neurons in fluorescence microscopy. However, it remains a challenge in bright-field microscopy due to the low Signal-to-Noise Ratio and signals from out-of-focus neurons. Automatic neuron counting in bright-field z-stacks is often performed on Extended Depth of Field images or on only one thick focal plane image. However, resolving overlapping cells that are located at different z-depths is a challenge. The overlap can be resolved by counting every neuron in its best focus z-plane because of their separation on the z-axis. Unbiased stereology is the state-of-the-art for total cell number estimation. The segmentation boundary for cells is required in order to incorporate the unbiased counting rule for stereology application. Hence, we perform counting via segmentation. We propose to achieve neuron segmentation in the optimal focal plane by posing the binary segmentation task as a multi-class multi-label task. Also, we propose to efficiently use a 2D U-Net for inter-image feature learning in a Multiple Input Multiple Output system that poses a binary segmentation task as a multi-class multi-label segmentation task. We demonstrate the accuracy and efficiency of the MIMO approach using a bright-field microscopy z-stack dataset locally prepared by an expert. The proposed MIMO approach is also validated on a dataset from the Cell Tracking Challenge achieving comparable results to a compared method equipped with memory units. Our z-stack dataset is available at https://tinyurl.com/wncfxn9m.

  • Název v anglickém jazyce

    MIMO U-Net: Efficient Cell Segmentation and Counting in Microscopy Image Sequences

  • Popis výsledku anglicky

    Automatic cell quantification in microscopy images can accelerate biomedical research. There has been significant progress in the 3D segmentation of neurons in fluorescence microscopy. However, it remains a challenge in bright-field microscopy due to the low Signal-to-Noise Ratio and signals from out-of-focus neurons. Automatic neuron counting in bright-field z-stacks is often performed on Extended Depth of Field images or on only one thick focal plane image. However, resolving overlapping cells that are located at different z-depths is a challenge. The overlap can be resolved by counting every neuron in its best focus z-plane because of their separation on the z-axis. Unbiased stereology is the state-of-the-art for total cell number estimation. The segmentation boundary for cells is required in order to incorporate the unbiased counting rule for stereology application. Hence, we perform counting via segmentation. We propose to achieve neuron segmentation in the optimal focal plane by posing the binary segmentation task as a multi-class multi-label task. Also, we propose to efficiently use a 2D U-Net for inter-image feature learning in a Multiple Input Multiple Output system that poses a binary segmentation task as a multi-class multi-label segmentation task. We demonstrate the accuracy and efficiency of the MIMO approach using a bright-field microscopy z-stack dataset locally prepared by an expert. The proposed MIMO approach is also validated on a dataset from the Cell Tracking Challenge achieving comparable results to a compared method equipped with memory units. Our z-stack dataset is available at https://tinyurl.com/wncfxn9m.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    30100 - Basic medicine

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    MEDICAL IMAGING 2023

  • ISBN

    978-1-5106-6047-2

  • ISSN

    1605-7422

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    1-7

  • Název nakladatele

    SPIE-INT SOC OPTICAL ENGINEERING

  • Místo vydání

    BELLINGHAM

  • Místo konání akce

    San Diego

  • Datum konání akce

    19. 2. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001011463700025