Note on Generating Orthogonal Polynomials and Their Application in Solving Complicated Polynomial Regression Tasks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11150%2F10%3A10080249" target="_blank" >RIV/00216208:11150/10:10080249 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Note on Generating Orthogonal Polynomials and Their Application in Solving Complicated Polynomial Regression Tasks
Popis výsledku v původním jazyce
The paper deals with efficient numerical solving the proposed statistical model using modern algorithms of numerical linear algebra. In particular, the main ingredients are: Numerically stable generation of vectors of values of orthogonal polynomials (the "design" matrix Psí) based on the MGS Arnoldi algorithm with reorthogonalization, algebraic derivation of the inversion of the matrix Psí'Omega(-1)Psí and, consequently, algebraic derivation of the solution of the system of normal equations, and, finally, efficient computation of testing quantities based on the Cholesky decomposition of relatively small matrices. The techniques presented in this paper represent economized way of solving the problem. From the point of view of practical computing, we save the computer memory as well as the time requirements. We manipulate only with small matrices, we do not compute inversions of large matrices and we do not even need to solve linear algebraic systems with large matrices.
Název v anglickém jazyce
Note on Generating Orthogonal Polynomials and Their Application in Solving Complicated Polynomial Regression Tasks
Popis výsledku anglicky
The paper deals with efficient numerical solving the proposed statistical model using modern algorithms of numerical linear algebra. In particular, the main ingredients are: Numerically stable generation of vectors of values of orthogonal polynomials (the "design" matrix Psí) based on the MGS Arnoldi algorithm with reorthogonalization, algebraic derivation of the inversion of the matrix Psí'Omega(-1)Psí and, consequently, algebraic derivation of the solution of the system of normal equations, and, finally, efficient computation of testing quantities based on the Cholesky decomposition of relatively small matrices. The techniques presented in this paper represent economized way of solving the problem. From the point of view of practical computing, we save the computer memory as well as the time requirements. We manipulate only with small matrices, we do not compute inversions of large matrices and we do not even need to solve linear algebraic systems with large matrices.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Mathematics and Computation
ISSN
0974-570X
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
J10
Stát vydavatele periodika
IN - Indická republika
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—