Increases in Intracellular Zinc Enhance Proliferative Signaling as well as Mitochondrial and Endolysosomal Activity in Human Melanocytes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11150%2F17%3A10366090" target="_blank" >RIV/00216208:11150/17:10366090 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1159/000480306" target="_blank" >https://doi.org/10.1159/000480306</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1159/000480306" target="_blank" >10.1159/000480306</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Increases in Intracellular Zinc Enhance Proliferative Signaling as well as Mitochondrial and Endolysosomal Activity in Human Melanocytes
Popis výsledku v původním jazyce
Zinc (Zn) is an important microelement required by skin cells for a variety of biological processes. The role of Zn in melanocyte proliferation and homeostasis has to date not been investigated. Methods: Human dermal melanocytes were isolated from patients and their proliferative activity determined along with both total and labile Zn content. Subsequently, changes in proliferation as well as in Zn content were determined upon exposure of the dermal melanocytes to external Zn. Further in-depth analyses were undertaken aimed at measuring the expression of proliferation-related proteins (determined by immunoblotting and densitometry), as well as changes in mitochondrial biogenesis and membrane potential (assessed by fluorescence-based cellometry) along with endolysosomal activity (determined by spectrofluorimetrically-measured elevation in fluorescence of lysosomal-aimed nonfluorescent substrate). Results: Human skin melanocytes accumulate externally added Zn, a process which dose-dependently enhances their injury or proliferative activity. Enhanced proliferation is accompanied by an increased expression of the proteins AKT3, ERK1/2, c-MYC and CYCD. In addition, Zn-enriched melanocytes exhibit enhanced mitochondrial biogenesis, with individual mitochondria possessing stabilized mitochondrial membrane potential as well as showing elevated ATP and superoxide levels. Moreover, upon external exposure, Zn enters lysosomes/melanosomes, the activity of which is stimulated along with the process of autophagy. Conclusion: The determination of the unique Zn-dependent stimulation of melanocytes and in particular the enhancement of the cells' mitochondrial as well as lysosomal/melanosomal activities may prove important in tracing the sequence of steps in the process of melanomagenesis.
Název v anglickém jazyce
Increases in Intracellular Zinc Enhance Proliferative Signaling as well as Mitochondrial and Endolysosomal Activity in Human Melanocytes
Popis výsledku anglicky
Zinc (Zn) is an important microelement required by skin cells for a variety of biological processes. The role of Zn in melanocyte proliferation and homeostasis has to date not been investigated. Methods: Human dermal melanocytes were isolated from patients and their proliferative activity determined along with both total and labile Zn content. Subsequently, changes in proliferation as well as in Zn content were determined upon exposure of the dermal melanocytes to external Zn. Further in-depth analyses were undertaken aimed at measuring the expression of proliferation-related proteins (determined by immunoblotting and densitometry), as well as changes in mitochondrial biogenesis and membrane potential (assessed by fluorescence-based cellometry) along with endolysosomal activity (determined by spectrofluorimetrically-measured elevation in fluorescence of lysosomal-aimed nonfluorescent substrate). Results: Human skin melanocytes accumulate externally added Zn, a process which dose-dependently enhances their injury or proliferative activity. Enhanced proliferation is accompanied by an increased expression of the proteins AKT3, ERK1/2, c-MYC and CYCD. In addition, Zn-enriched melanocytes exhibit enhanced mitochondrial biogenesis, with individual mitochondria possessing stabilized mitochondrial membrane potential as well as showing elevated ATP and superoxide levels. Moreover, upon external exposure, Zn enters lysosomes/melanosomes, the activity of which is stimulated along with the process of autophagy. Conclusion: The determination of the unique Zn-dependent stimulation of melanocytes and in particular the enhancement of the cells' mitochondrial as well as lysosomal/melanosomal activities may prove important in tracing the sequence of steps in the process of melanomagenesis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10601 - Cell biology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cellular Physiology and Biochemistry
ISSN
1015-8987
e-ISSN
—
Svazek periodika
43
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000415240500001
EID výsledku v databázi Scopus
2-s2.0-85031893925