Unbiased estimation of permutation entropy in EEG analysis for Alzheimer's disease classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11150%2F18%3A10381611" target="_blank" >RIV/00216208:11150/18:10381611 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/18:00316543
Výsledek na webu
<a href="https://doi.org/10.1016/j.bspc.2017.08.012" target="_blank" >https://doi.org/10.1016/j.bspc.2017.08.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bspc.2017.08.012" target="_blank" >10.1016/j.bspc.2017.08.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unbiased estimation of permutation entropy in EEG analysis for Alzheimer's disease classification
Popis výsledku v původním jazyce
The EEG signal of healthy patient can be recognized as an output of a chaotic system. There are many measures of chaotic behaviour: Hurst and Lyapunov exponents, various dimensions of attractor, various entropy measures, etc. We prefer permutation entropy of equidistantly sampled data. The novelty of our approach is in bias reduction of permutation entropy estimates, memory decrease, and time complexities of permutation analysis. Therefore, we are not limited by the EEG signal and permutation sample lengths. This general method was used for channel by channel analysis of Alzheimer's diseased (AD) and healthy (CN) patients to point out the differences between AD and CN groups. Our technique also enables to study the influence of EEG sampling frequency in a wide range. The best results were obtained for sampling frequency 200 Hz, using at most window of length 10. In the case of Alzheimer's disease, we observed a statistically significant decrease in permutation entropy at all channels.
Název v anglickém jazyce
Unbiased estimation of permutation entropy in EEG analysis for Alzheimer's disease classification
Popis výsledku anglicky
The EEG signal of healthy patient can be recognized as an output of a chaotic system. There are many measures of chaotic behaviour: Hurst and Lyapunov exponents, various dimensions of attractor, various entropy measures, etc. We prefer permutation entropy of equidistantly sampled data. The novelty of our approach is in bias reduction of permutation entropy estimates, memory decrease, and time complexities of permutation analysis. Therefore, we are not limited by the EEG signal and permutation sample lengths. This general method was used for channel by channel analysis of Alzheimer's diseased (AD) and healthy (CN) patients to point out the differences between AD and CN groups. Our technique also enables to study the influence of EEG sampling frequency in a wide range. The best results were obtained for sampling frequency 200 Hz, using at most window of length 10. In the case of Alzheimer's disease, we observed a statistically significant decrease in permutation entropy at all channels.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Signal Processing and Control
ISSN
1746-8094
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
424-430
Kód UT WoS článku
000412607900039
EID výsledku v databázi Scopus
2-s2.0-85028325768