Prediction of HPLC retention factor of potential antituberculotics by QSRR
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F11%3A10099550" target="_blank" >RIV/00216208:11160/11:10099550 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.tandfonline.com/doi/pdf/10.1080/10826076.2011.545747" target="_blank" >http://www.tandfonline.com/doi/pdf/10.1080/10826076.2011.545747</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10826076.2011.545747" target="_blank" >10.1080/10826076.2011.545747</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of HPLC retention factor of potential antituberculotics by QSRR
Popis výsledku v původním jazyce
Derivatives of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dione (PBOD) have become important mainly as perspective antituberculotic drugs. Quantitative structure-retention relationship (QSRR) is used for predicting the HPLC retention factor of this group of compounds and optimal chromatographic conditions appropriate for this purpose are selected. Among many molecular properties utilizable as the QSRR descriptors, mainly, in silico variables are advantageous as they closely characterize the HPLC retention of the PBOD molecule. Additionally, they are available without a need of the compound synthesis, which is important in the first stage of development of the potential drug. Artificial neural networks (ANN) were successfully used as the basic modeling QSRR tools because their regression outputs allow a direct prediction of retention factors for different combinations of the stationary and mobile phases.
Název v anglickém jazyce
Prediction of HPLC retention factor of potential antituberculotics by QSRR
Popis výsledku anglicky
Derivatives of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dione (PBOD) have become important mainly as perspective antituberculotic drugs. Quantitative structure-retention relationship (QSRR) is used for predicting the HPLC retention factor of this group of compounds and optimal chromatographic conditions appropriate for this purpose are selected. Among many molecular properties utilizable as the QSRR descriptors, mainly, in silico variables are advantageous as they closely characterize the HPLC retention of the PBOD molecule. Additionally, they are available without a need of the compound synthesis, which is important in the first stage of development of the potential drug. Artificial neural networks (ANN) were successfully used as the basic modeling QSRR tools because their regression outputs allow a direct prediction of retention factors for different combinations of the stationary and mobile phases.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FR - Farmakologie a lékárnická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Liquid Chromatography and Related Technologies
ISSN
1082-6076
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
168-181
Kód UT WoS článku
000286895200002
EID výsledku v databázi Scopus
—