Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Key aspects of covert networks data collection: Problems, challenges, and opportunities

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F19%3A10402246" target="_blank" >RIV/00216208:11210/19:10402246 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VnKKmIlKsd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VnKKmIlKsd</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.socnet.2019.10.002" target="_blank" >10.1016/j.socnet.2019.10.002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Key aspects of covert networks data collection: Problems, challenges, and opportunities

  • Popis výsledku v původním jazyce

    Data quality is considered to be among the greatest challenges in research on covert networks. This study identifies six aspects of network data collection, namely nodes, ties, attributes, levels, dynamics, and context. Addressing these aspects presents challenges, but also opens theoretical and methodological opportunities. Furthermore, specific issues arise in this research context, stemming from the use of secondary data and the problem of missing data. While each of the issues and challenges has some specific solution in the literature on organized crime and social networks, the main argument of this paper is to try and follow a more systematic and general solution to deal with these issues. To this end, three potentially synergistic and combinable techniques for data collection are proposed for each stage of data collection - biographies for data extraction, graph databases for data storage, and checklists for data reporting. The paper concludes with discussing the use of statistical models to analyse covert networks and the cultivation of relations within the research community and between researchers and practitioners.

  • Název v anglickém jazyce

    Key aspects of covert networks data collection: Problems, challenges, and opportunities

  • Popis výsledku anglicky

    Data quality is considered to be among the greatest challenges in research on covert networks. This study identifies six aspects of network data collection, namely nodes, ties, attributes, levels, dynamics, and context. Addressing these aspects presents challenges, but also opens theoretical and methodological opportunities. Furthermore, specific issues arise in this research context, stemming from the use of secondary data and the problem of missing data. While each of the issues and challenges has some specific solution in the literature on organized crime and social networks, the main argument of this paper is to try and follow a more systematic and general solution to deal with these issues. To this end, three potentially synergistic and combinable techniques for data collection are proposed for each stage of data collection - biographies for data extraction, graph databases for data storage, and checklists for data reporting. The paper concludes with discussing the use of statistical models to analyse covert networks and the cultivation of relations within the research community and between researchers and practitioners.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50401 - Sociology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Social Networks

  • ISSN

    0378-8733

  • e-ISSN

  • Svazek periodika

    69

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    10

  • Strana od-do

    160-169

  • Kód UT WoS článku

    000777028500001

  • EID výsledku v databázi Scopus

    2-s2.0-85074486350