Key aspects of covert networks data collection: Problems, challenges, and opportunities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F19%3A10402246" target="_blank" >RIV/00216208:11210/19:10402246 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VnKKmIlKsd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VnKKmIlKsd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.socnet.2019.10.002" target="_blank" >10.1016/j.socnet.2019.10.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Key aspects of covert networks data collection: Problems, challenges, and opportunities
Popis výsledku v původním jazyce
Data quality is considered to be among the greatest challenges in research on covert networks. This study identifies six aspects of network data collection, namely nodes, ties, attributes, levels, dynamics, and context. Addressing these aspects presents challenges, but also opens theoretical and methodological opportunities. Furthermore, specific issues arise in this research context, stemming from the use of secondary data and the problem of missing data. While each of the issues and challenges has some specific solution in the literature on organized crime and social networks, the main argument of this paper is to try and follow a more systematic and general solution to deal with these issues. To this end, three potentially synergistic and combinable techniques for data collection are proposed for each stage of data collection - biographies for data extraction, graph databases for data storage, and checklists for data reporting. The paper concludes with discussing the use of statistical models to analyse covert networks and the cultivation of relations within the research community and between researchers and practitioners.
Název v anglickém jazyce
Key aspects of covert networks data collection: Problems, challenges, and opportunities
Popis výsledku anglicky
Data quality is considered to be among the greatest challenges in research on covert networks. This study identifies six aspects of network data collection, namely nodes, ties, attributes, levels, dynamics, and context. Addressing these aspects presents challenges, but also opens theoretical and methodological opportunities. Furthermore, specific issues arise in this research context, stemming from the use of secondary data and the problem of missing data. While each of the issues and challenges has some specific solution in the literature on organized crime and social networks, the main argument of this paper is to try and follow a more systematic and general solution to deal with these issues. To this end, three potentially synergistic and combinable techniques for data collection are proposed for each stage of data collection - biographies for data extraction, graph databases for data storage, and checklists for data reporting. The paper concludes with discussing the use of statistical models to analyse covert networks and the cultivation of relations within the research community and between researchers and practitioners.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50401 - Sociology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Social Networks
ISSN
0378-8733
e-ISSN
—
Svazek periodika
69
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
160-169
Kód UT WoS článku
000777028500001
EID výsledku v databázi Scopus
2-s2.0-85074486350