Cross-linguistic variations in syntactic complexity: insights from a multilingual parallel corpus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F24%3A10489058" target="_blank" >RIV/00216208:11210/24:10489058 - isvavai.cz</a>
Výsledek na webu
<a href="https://jakobson.korpus.cz/~rosen/public/2024_Singapur.pdf" target="_blank" >https://jakobson.korpus.cz/~rosen/public/2024_Singapur.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cross-linguistic variations in syntactic complexity: insights from a multilingual parallel corpus
Popis výsledku v původním jazyce
The study examines cross-linguistic variation in syntactic complexity (SC). Using the InterCorp multilingual corpus, with 49 languages annotated by Universal Dependencies (UD) and 6 syntactic complexity measures (SCMs), we analyse parallel texts both cross-linguistically and intra-linguistically (across text types), using InterCorp, a multilingual parallel corpus with Universal Dependencies (UD) annotation and syntactic complexity measures (SCMs). The pilot study of 12 languages has shown that: (i) Both language and text type influence the syntactic complexity of texts and sentences, but text type shows a larger effect size than language (in our sample). This highlights the importance of distinguishing text types in cross-linguistic analyses. (ii) Within fiction, languages cluster differently according to different SCMs (sLength and subRatio). The differences are given by structural variations between languages, but also - in Japanese - partly by the specifics of the UD annotation (tokenization). In fiction, languages show high degree of variation, due to the stylistic diversity of the analyzed texts.(iii) A strong correlation was observed between the two NP measures (maxNPDepth and maxNPLength) and between the two clausal measures (maxTreeDepth and subRatio). Most of the languages in the sample show a similar PCA pattern, but in other languages, patterns vary both cross-linguistically and intra-linguistically (text type variation).
Název v anglickém jazyce
Cross-linguistic variations in syntactic complexity: insights from a multilingual parallel corpus
Popis výsledku anglicky
The study examines cross-linguistic variation in syntactic complexity (SC). Using the InterCorp multilingual corpus, with 49 languages annotated by Universal Dependencies (UD) and 6 syntactic complexity measures (SCMs), we analyse parallel texts both cross-linguistically and intra-linguistically (across text types), using InterCorp, a multilingual parallel corpus with Universal Dependencies (UD) annotation and syntactic complexity measures (SCMs). The pilot study of 12 languages has shown that: (i) Both language and text type influence the syntactic complexity of texts and sentences, but text type shows a larger effect size than language (in our sample). This highlights the importance of distinguishing text types in cross-linguistic analyses. (ii) Within fiction, languages cluster differently according to different SCMs (sLength and subRatio). The differences are given by structural variations between languages, but also - in Japanese - partly by the specifics of the UD annotation (tokenization). In fiction, languages show high degree of variation, due to the stylistic diversity of the analyzed texts.(iii) A strong correlation was observed between the two NP measures (maxNPDepth and maxNPLength) and between the two clausal measures (maxTreeDepth and subRatio). Most of the languages in the sample show a similar PCA pattern, but in other languages, patterns vary both cross-linguistically and intra-linguistically (text type variation).
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
60203 - Linguistics
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023044" target="_blank" >LM2023044: Český národní korpus</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů