Measuring executive personality using machine-learning algorithms: A new approach and audit fee-based validation tests
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F20%3A10410967" target="_blank" >RIV/00216208:11230/20:10410967 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=UPd9kWfSEs" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=UPd9kWfSEs</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/jbfa.12406" target="_blank" >10.1111/jbfa.12406</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Measuring executive personality using machine-learning algorithms: A new approach and audit fee-based validation tests
Popis výsledku v původním jazyce
We present a novel approach for measuring executive personality traits. Relying on recent developments in machine learning and artificial intelligence, we utilize the IBM Watson Personality Insights service to measure executive personalities based on CEOs' and CFOs' responses to questions raised by analysts during conference calls. We obtain the Big Five personality traits - openness, conscientiousness, extraversion, agreeableness and neuroticism - based on which we estimate risk tolerance. To validate these traits, we first demonstrate that our risk-tolerance measure varies with existing inherent and behavioural-based measures (gender, age, sensitivity of executive compensation to stock return volatility, and executive unexercised-vested options) in predictable ways. Second, we show that variation in firm-year level personality trait measures, including risk tolerance, is largely explained by manager characteristics, as opposed to firm characteristics and firm performance. Finally, we find that executive inherent risk tolerance helps explain the positive relationship between client risk and audit fees documented in the prior literature. Specifically, the effect of CEO risk-tolerance - as an innate personality trait - on audit fees is incremental to the effect of increased risk appetite from equity risk-taking incentives (Vega). Measuring executive personality using machine-learning algorithms will thus allow researchers to pursue studies that were previously difficult to conduct.
Název v anglickém jazyce
Measuring executive personality using machine-learning algorithms: A new approach and audit fee-based validation tests
Popis výsledku anglicky
We present a novel approach for measuring executive personality traits. Relying on recent developments in machine learning and artificial intelligence, we utilize the IBM Watson Personality Insights service to measure executive personalities based on CEOs' and CFOs' responses to questions raised by analysts during conference calls. We obtain the Big Five personality traits - openness, conscientiousness, extraversion, agreeableness and neuroticism - based on which we estimate risk tolerance. To validate these traits, we first demonstrate that our risk-tolerance measure varies with existing inherent and behavioural-based measures (gender, age, sensitivity of executive compensation to stock return volatility, and executive unexercised-vested options) in predictable ways. Second, we show that variation in firm-year level personality trait measures, including risk tolerance, is largely explained by manager characteristics, as opposed to firm characteristics and firm performance. Finally, we find that executive inherent risk tolerance helps explain the positive relationship between client risk and audit fees documented in the prior literature. Specifically, the effect of CEO risk-tolerance - as an innate personality trait - on audit fees is incremental to the effect of increased risk appetite from equity risk-taking incentives (Vega). Measuring executive personality using machine-learning algorithms will thus allow researchers to pursue studies that were previously difficult to conduct.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-13040S" target="_blank" >GA15-13040S: Kvalita účetních údajů, ziskovost obchodování manažerů a informační obsah ceny akcií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Business Finance and Accounting
ISSN
0306-686X
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
3-4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
26
Strana od-do
519-544
Kód UT WoS článku
000530550000008
EID výsledku v databázi Scopus
2-s2.0-85073987772