Deciding What to Replicate: A Decision Model for Replication Study Selection Under Resource and Knowledge Constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F23%3A10435755" target="_blank" >RIV/00216208:11230/23:10435755 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11410/23:10435755 RIV/61384399:31130/23:00057682
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OEao4DXvpc" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OEao4DXvpc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1037/met0000438" target="_blank" >10.1037/met0000438</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deciding What to Replicate: A Decision Model for Replication Study Selection Under Resource and Knowledge Constraints
Popis výsledku v původním jazyce
Robust scientific knowledge is contingent upon replication of original findings. However, replicating researchers are constrained by resources, and will almost always have to choose one replication effort to focus on from a set of potential candidates. To select a candidate efficiently in these cases, we need methods for deciding which out of all candidates considered would be the most useful to replicate, given some overall goal researchers wish to achieve. In this article we assume that the overall goal researchers wish to achieve is to maximize the utility gained by conducting the replication study. We then propose a general rule for study selection in replication research based on the replication value of the set of claims considered for replication. The replication value of a claim is defined as the maximum expected utility we could gain by conducting a replication of the claim, and is a function of (a) the value of being certain about the claim, and (b) uncertainty about the claim based on current evidence. We formalize this definition in terms of a causal decision model, utilizing concepts from decision theory and causal graph modeling. We discuss the validity of using replication value as a measure of expected utility gain, and we suggest approaches for deriving quantitative estimates of replication value. Our goal in this article is not to define concrete guidelines for study selection, but to provide the necessary theoretical foundations on which such concrete guidelines could be built.
Název v anglickém jazyce
Deciding What to Replicate: A Decision Model for Replication Study Selection Under Resource and Knowledge Constraints
Popis výsledku anglicky
Robust scientific knowledge is contingent upon replication of original findings. However, replicating researchers are constrained by resources, and will almost always have to choose one replication effort to focus on from a set of potential candidates. To select a candidate efficiently in these cases, we need methods for deciding which out of all candidates considered would be the most useful to replicate, given some overall goal researchers wish to achieve. In this article we assume that the overall goal researchers wish to achieve is to maximize the utility gained by conducting the replication study. We then propose a general rule for study selection in replication research based on the replication value of the set of claims considered for replication. The replication value of a claim is defined as the maximum expected utility we could gain by conducting a replication of the claim, and is a function of (a) the value of being certain about the claim, and (b) uncertainty about the claim based on current evidence. We formalize this definition in terms of a causal decision model, utilizing concepts from decision theory and causal graph modeling. We discuss the validity of using replication value as a measure of expected utility gain, and we suggest approaches for deriving quantitative estimates of replication value. Our goal in this article is not to define concrete guidelines for study selection, but to provide the necessary theoretical foundations on which such concrete guidelines could be built.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50101 - Psychology (including human - machine relations)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Psychological Methods
ISSN
1082-989X
e-ISSN
1939-1463
Svazek periodika
28
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
438-451
Kód UT WoS článku
000733130200001
EID výsledku v databázi Scopus
2-s2.0-85122340446