Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Why and how to construct an epistemic justification of machine learning?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F24%3A10482729" target="_blank" >RIV/00216208:11230/24:10482729 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CXT1jqXZDY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CXT1jqXZDY</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11229-024-04702-z" target="_blank" >10.1007/s11229-024-04702-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Why and how to construct an epistemic justification of machine learning?

  • Popis výsledku v původním jazyce

    Consider a set of shuffled observations drawn from a fixed probability distribution over some instance domain. What enables learning of inductive generalizations which proceed from such a set of observations? The scenario is worthwhile because it epistemically characterizes most of machine learning. This kind of learning from observations is also inverse and ill-posed. What reduces the non-uniqueness of its result and, thus, its problematic epistemic justification, which stems from a one-to-many relation between the observations and many learnable generalizations? The paper argues that this role belongs to any complexity regularization which satisfies Norton&apos;s Material Theory of Induction (MTI) by localizing the inductive risk to facts in the given domain. A prime example of the localization is the Lottery Ticket Hypothesis (LTH) about overparameterized neural networks. The explanation of MTI&apos;s role in complexity regularization of neural networks is provided by analyzing the stability of Empirical Risk Minimization (ERM), an inductive rule that controls the learning process and leads to an inductive generalization on the given set of observations. In cases where ERM might become asymptotically unstable, making the justification of the generalization by uniform convergence unavailable, LTH and MTI can be used to define a local stability. A priori, overparameterized neural networks are such cases and the combination of LTH and MTI can block ERM&apos;s trivialization caused by equalizing the strengths of its inductive support for risk minimization. We bring closer the investigation of generalization in artificial neural networks and the study of inductive inference and show the division of labor between MTI and the optimality justifications (developed by Gerhard Schurz) in machine learning.

  • Název v anglickém jazyce

    Why and how to construct an epistemic justification of machine learning?

  • Popis výsledku anglicky

    Consider a set of shuffled observations drawn from a fixed probability distribution over some instance domain. What enables learning of inductive generalizations which proceed from such a set of observations? The scenario is worthwhile because it epistemically characterizes most of machine learning. This kind of learning from observations is also inverse and ill-posed. What reduces the non-uniqueness of its result and, thus, its problematic epistemic justification, which stems from a one-to-many relation between the observations and many learnable generalizations? The paper argues that this role belongs to any complexity regularization which satisfies Norton&apos;s Material Theory of Induction (MTI) by localizing the inductive risk to facts in the given domain. A prime example of the localization is the Lottery Ticket Hypothesis (LTH) about overparameterized neural networks. The explanation of MTI&apos;s role in complexity regularization of neural networks is provided by analyzing the stability of Empirical Risk Minimization (ERM), an inductive rule that controls the learning process and leads to an inductive generalization on the given set of observations. In cases where ERM might become asymptotically unstable, making the justification of the generalization by uniform convergence unavailable, LTH and MTI can be used to define a local stability. A priori, overparameterized neural networks are such cases and the combination of LTH and MTI can block ERM&apos;s trivialization caused by equalizing the strengths of its inductive support for risk minimization. We bring closer the investigation of generalization in artificial neural networks and the study of inductive inference and show the division of labor between MTI and the optimality justifications (developed by Gerhard Schurz) in machine learning.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50601 - Political science

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LX22NPO5101" target="_blank" >LX22NPO5101: Národní institut pro výzkum socioekonomických dopadů nemocí a systémových rizik</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Synthese

  • ISSN

    0039-7857

  • e-ISSN

    1573-0964

  • Svazek periodika

    204

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    24

  • Strana od-do

    1-24

  • Kód UT WoS článku

    001287981600001

  • EID výsledku v databázi Scopus

    2-s2.0-85200732008