Pipeline and dataset generation for automated fact-checking in almost any language
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F24%3A10491323" target="_blank" >RIV/00216208:11230/24:10491323 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/24:00376915
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LlIO7PMEmJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LlIO7PMEmJ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-024-10113-5" target="_blank" >10.1007/s00521-024-10113-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pipeline and dataset generation for automated fact-checking in almost any language
Popis výsledku v původním jazyce
This article presents a pipeline for automated fact-checking leveraging publicly available language models and data. The objective is to assess the accuracy of textual claims using evidence from a ground-truth evidence corpus. The pipeline consists of two main modules-the evidence retrieval and the claim veracity evaluation. Our primary focus is on the ease of deployment in various languages that remain unexplored in the field of automated fact-checking. Unlike most similar pipelines, which work with evidence sentences, our pipeline processes data on a paragraph level, simplifying the overall architecture and data requirements. Given the high cost of annotating language-specific fact-checking training data, our solution builds on the question answering for claim generation method, which we adapt and use to generate the data for all models of the pipeline. Our strategy enables the introduction of new languages through machine translation of only two fixed datasets of moderate size. Subsequently, any number of training samples can be generated based on an evidence corpus in the target language. We provide open access to all data and fine-tuned models for Czech, English, Polish, and Slovak pipelines, as well as to our codebase that may be used to reproduce the results. We comprehensively evaluate the pipelines for all four languages, including human annotations and per-sample difficulty assessment using Pointwise-information. The presented experiments are based on full Wikipedia snapshots to promote reproducibility. To facilitate implementation and user interaction, we develop the FactSearch application featuring the proposed pipeline and the preliminary feedback on its performance.
Název v anglickém jazyce
Pipeline and dataset generation for automated fact-checking in almost any language
Popis výsledku anglicky
This article presents a pipeline for automated fact-checking leveraging publicly available language models and data. The objective is to assess the accuracy of textual claims using evidence from a ground-truth evidence corpus. The pipeline consists of two main modules-the evidence retrieval and the claim veracity evaluation. Our primary focus is on the ease of deployment in various languages that remain unexplored in the field of automated fact-checking. Unlike most similar pipelines, which work with evidence sentences, our pipeline processes data on a paragraph level, simplifying the overall architecture and data requirements. Given the high cost of annotating language-specific fact-checking training data, our solution builds on the question answering for claim generation method, which we adapt and use to generate the data for all models of the pipeline. Our strategy enables the introduction of new languages through machine translation of only two fixed datasets of moderate size. Subsequently, any number of training samples can be generated based on an evidence corpus in the target language. We provide open access to all data and fine-tuned models for Czech, English, Polish, and Slovak pipelines, as well as to our codebase that may be used to reproduce the results. We comprehensively evaluate the pipelines for all four languages, including human annotations and per-sample difficulty assessment using Pointwise-information. The presented experiments are based on full Wikipedia snapshots to promote reproducibility. To facilitate implementation and user interaction, we develop the FactSearch application featuring the proposed pipeline and the preliminary feedback on its performance.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computing and Applications
ISSN
0941-0643
e-ISSN
1433-3058
Svazek periodika
36
Číslo periodika v rámci svazku
30
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
19023-19054
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85200201059