Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Categorical data imputation under MAR missing scheme

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F13%3A10146019" target="_blank" >RIV/00216208:11310/13:10146019 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Categorical data imputation under MAR missing scheme

  • Popis výsledku v původním jazyce

    Traditional missing data techniques of imputation of the MAR (missing at random) schemes focus on prediction of the missing value based on other observed values. In the case of continuous missing data the imputation of missing values often focuses on regression models. In the case of categorical data, usual techniques are then focused on classification techniques which sets the missing value to the 'most likely' category. This however leads to overrepresentation of the categories which are in general observed more often and hence can lead to biased results in many tasks especially in the case of presence of dominant categories. We present original methodology of imputation of missing values which results in the most likely structure (distribution) of the missing data conditional on the observed values. The methodology is based on the assumption that the categorical variable containing the missing values has multinomial distribution. Values of the parameters of this distribution are tha

  • Název v anglickém jazyce

    Categorical data imputation under MAR missing scheme

  • Popis výsledku anglicky

    Traditional missing data techniques of imputation of the MAR (missing at random) schemes focus on prediction of the missing value based on other observed values. In the case of continuous missing data the imputation of missing values often focuses on regression models. In the case of categorical data, usual techniques are then focused on classification techniques which sets the missing value to the 'most likely' category. This however leads to overrepresentation of the categories which are in general observed more often and hence can lead to biased results in many tasks especially in the case of presence of dominant categories. We present original methodology of imputation of missing values which results in the most likely structure (distribution) of the missing data conditional on the observed values. The methodology is based on the assumption that the categorical variable containing the missing values has multinomial distribution. Values of the parameters of this distribution are tha

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    AO - Sociologie, demografie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů