Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F14%3A10283359" target="_blank" >RIV/00216208:11310/14:10283359 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1111/j.1600-0587.2013.00441.x" target="_blank" >http://dx.doi.org/10.1111/j.1600-0587.2013.00441.x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/j.1600-0587.2013.00441.x" target="_blank" >10.1111/j.1600-0587.2013.00441.x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models
Popis výsledku v původním jazyce
Ecological niche models represent key tools in biogeography but the effects of biased sampling hinder their use. Here, we address the utility of two forms of filtering the calibration data set (geographic and environmental) to reduce the effects of sampling bias. To do so we created a virtual species, projected its niche to the Iberian Peninsula and took samples from its binary geographic distribution using several biases. We then built models for various sample sizes after applying each of the filtering approaches. While geographic filtering did not improve discriminatory ability (and sometimes worsened it), environmental filtering consistently led to better models. Models made with few but climatically filtered points performed better than those madewith many unfiltered (biased) points. Future research should address additional factors such as the complexity of the species' niche, strength of filtering, and ability to predict suitability (rather than focus purely on discrimination).
Název v anglickém jazyce
Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models
Popis výsledku anglicky
Ecological niche models represent key tools in biogeography but the effects of biased sampling hinder their use. Here, we address the utility of two forms of filtering the calibration data set (geographic and environmental) to reduce the effects of sampling bias. To do so we created a virtual species, projected its niche to the Iberian Peninsula and took samples from its binary geographic distribution using several biases. We then built models for various sample sizes after applying each of the filtering approaches. While geographic filtering did not improve discriminatory ability (and sometimes worsened it), environmental filtering consistently led to better models. Models made with few but climatically filtered points performed better than those madewith many unfiltered (biased) points. Future research should address additional factors such as the complexity of the species' niche, strength of filtering, and ability to predict suitability (rather than focus purely on discrimination).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EH - Ekologie – společenstva
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecography
ISSN
0906-7590
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DK - Dánské království
Počet stran výsledku
8
Strana od-do
1084-1091
Kód UT WoS článku
000344645100008
EID výsledku v databázi Scopus
—