The surface stability and equilibrium crystal morphology of Ni2P nanoparticles and nanowires from an ab initio atomistic thermodynamic approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F16%3A10325130" target="_blank" >RIV/00216208:11310/16:10325130 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1039/c6ce00584e" target="_blank" >http://dx.doi.org/10.1039/c6ce00584e</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c6ce00584e" target="_blank" >10.1039/c6ce00584e</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The surface stability and equilibrium crystal morphology of Ni2P nanoparticles and nanowires from an ab initio atomistic thermodynamic approach
Popis výsledku v původním jazyce
Knowledge of the equilibrium crystal shape and structure of the exposed surfaces of nickel phosphide (Ni2P) nanostructures is essential for understanding and control of their catalytic performance. Ab initio atomistic thermodynamics was used to investigate computationally the effects of the experimental conditions (temperature, pressure, and chemical potentials) on the relative stabilities of low-Miller index surfaces and on the equilibrium crystal morphology of Ni2P nanoparticles and nanowires. The P-covered (0001)-Ni3P2 (denoted as (0001)-A-P) surface was found to be the most stable surface at a considerably wide range of chemical potentials, whereas the (0001)-A, (10 (1) over bar1)-Ni/P and (10 (1) over bar2)-Ni/P surfaces are the thermodynamically most favored phases just in narrow chemical potential regions. The theoretical equilibrium shapes and structures of the Ni2P nanoparticles and nanowires were obtained based on the Wulff construction at various chemical potentials. The morphology of the surfaces of the Ni2P nanoparticles and nanowires does depend on the chemical potential; thus, it can be tailored for particular applications by a suitable choice of experimental conditions. The (0001), (10 (1) over bar0) and (10 (1) over bar1) side facets dominate the nanoparticle surface in a wide range of chemical potentials but other side facets can also appear at particular ranges of chemical potentials. Results reported herein give new insight into the Ni2P nanoparticle morphology showing how it depends on the experimental conditions; this information can help to tailor the surface and shape of Ni2P nanoparticles for specific applications, e.g., in catalysis.
Název v anglickém jazyce
The surface stability and equilibrium crystal morphology of Ni2P nanoparticles and nanowires from an ab initio atomistic thermodynamic approach
Popis výsledku anglicky
Knowledge of the equilibrium crystal shape and structure of the exposed surfaces of nickel phosphide (Ni2P) nanostructures is essential for understanding and control of their catalytic performance. Ab initio atomistic thermodynamics was used to investigate computationally the effects of the experimental conditions (temperature, pressure, and chemical potentials) on the relative stabilities of low-Miller index surfaces and on the equilibrium crystal morphology of Ni2P nanoparticles and nanowires. The P-covered (0001)-Ni3P2 (denoted as (0001)-A-P) surface was found to be the most stable surface at a considerably wide range of chemical potentials, whereas the (0001)-A, (10 (1) over bar1)-Ni/P and (10 (1) over bar2)-Ni/P surfaces are the thermodynamically most favored phases just in narrow chemical potential regions. The theoretical equilibrium shapes and structures of the Ni2P nanoparticles and nanowires were obtained based on the Wulff construction at various chemical potentials. The morphology of the surfaces of the Ni2P nanoparticles and nanowires does depend on the chemical potential; thus, it can be tailored for particular applications by a suitable choice of experimental conditions. The (0001), (10 (1) over bar0) and (10 (1) over bar1) side facets dominate the nanoparticle surface in a wide range of chemical potentials but other side facets can also appear at particular ranges of chemical potentials. Results reported herein give new insight into the Ni2P nanoparticle morphology showing how it depends on the experimental conditions; this information can help to tailor the surface and shape of Ni2P nanoparticles for specific applications, e.g., in catalysis.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP106%2F12%2FG015" target="_blank" >GBP106/12/G015: Vývoj nových nanoporézních adsorbentů a katalyzátorů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CrystEngComm
ISSN
1466-8033
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
21
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
3808-3818
Kód UT WoS článku
000377085700008
EID výsledku v databázi Scopus
—